IDEAS home Printed from https://ideas.repec.org/p/hhs/sdueko/2011_004.html
   My bibliography  Save this paper

Scale properties in data envelopment analysis

Author

Listed:
  • Olesen, Ole Bent

    (Department of Business and Economics)

  • Petersen, Niels Christian

    (Department of Health Economics)

Abstract

Recently there has been some discussion in the literature concerning the nature of scale properties in the Data Envelopment Model (DEA). It has been argued that DEA may not be able to provide reliable estimates of the optimal scale size. We argue in this paper that DEA is well suited to estimate optimal scale size, if DEA is augmented with two additional maintained hypotheses which imply that the DEA-frontier is consistent with smooth curves along rays in input and in output space that obey the Regular Ultra Passum (RUP) law (Frisch 1965). A necessary condition for a smooth curve passing through all vertices to obey the RUP-law is presented. If this condition is satisfied then upper and lower bounds for the marginal product at each vertex are presented. It is shown that any set of feasible marginal products will correspond to a smooth curve passing through all points with a monotonic decreasing scale elasticity. The proof is constructive in the sense that an estimator of the curve is provided with the desired properties. A typical DEA based return to scale analysis simply reports whether or not a DMU is at the optimal scale based on point estimates of scale efficiency. A contribution of this paper is that we provide a method which allows us to determine in what interval optimal scale is located.

Suggested Citation

  • Olesen, Ole Bent & Petersen, Niels Christian, 2011. "Scale properties in data envelopment analysis," Discussion Papers on Economics 4/2011, University of Southern Denmark, Department of Economics.
  • Handle: RePEc:hhs:sdueko:2011_004
    as

    Download full text from publisher

    File URL: https://www.sdu.dk/-/media/files/om_sdu/institutter/ivoe/disc_papers/disc_2011/dpbe4_2011.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Banker, Rajiv D. & Thrall, R. M., 1992. "Estimation of returns to scale using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 62(1), pages 74-84, October.
    2. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    3. Finn Førsund & Lennart Hjalmarsson, 2004. "Are all Scales Optimal in DEA? Theory and Empirical Evidence," Journal of Productivity Analysis, Springer, vol. 21(1), pages 25-48, January.
    4. F R Førsund & L Hjalmarsson, 2004. "Calculating scale elasticity in DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1023-1038, October.
    5. A. Zellner & N. S. Revankar, 1969. "Generalized Production Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(2), pages 241-250.
    6. O. B. Olesen & N. C. Petersen, 1996. "Indicators of Ill-Conditioned Data Sets and Model Misspecification in Data Envelopment Analysis: An Extended Facet Approach," Management Science, INFORMS, vol. 42(2), pages 205-219, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olesen, Ole B. & Ruggiero, John, 2012. "Maintaining the Regular Ultra Passum Law in data envelopment analysis," Discussion Papers on Economics 2/2012, University of Southern Denmark, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olesen, Ole Bent & Petersen, Niels Christian, 2013. "Imposing the Regular Ultra Passum law in DEA models," Omega, Elsevier, vol. 41(1), pages 16-27.
    2. F R Førsund & L Hjalmarsson, 2004. "Calculating scale elasticity in DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1023-1038, October.
    3. Forsund, Finn R. & Sarafoglou, Nikias, 2005. "The tale of two research communities: The diffusion of research on productive efficiency," International Journal of Production Economics, Elsevier, vol. 98(1), pages 17-40, October.
    4. Victor V. Podinovski & Robert G. Chambers & Kazim Baris Atici & Iryna D. Deineko, 2016. "Marginal Values and Returns to Scale for Nonparametric Production Frontiers," Operations Research, INFORMS, vol. 64(1), pages 236-250, February.
    5. K. Tone & M. Tsutsui, 2015. "How to Deal with Non-Convex Frontiers in Data Envelopment Analysis," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 1002-1028, September.
    6. Zelenyuk, Valentin, 2013. "A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation," European Journal of Operational Research, Elsevier, vol. 228(3), pages 592-600.
    7. Chia-Yen Lee, 2017. "Directional marginal productivity: a foundation of meta-data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 544-555, May.
    8. Seiford, Lawrence M. & Zhu, Joe, 1998. "On alternative optimal solutions in the estimation of returns to scale in DEA," European Journal of Operational Research, Elsevier, vol. 108(1), pages 149-152, July.
    9. Victor V. Podinovski & Tatiana Bouzdine-Chameeva, 2021. "Optimal solutions of multiplier DEA models," Journal of Productivity Analysis, Springer, vol. 56(1), pages 45-68, August.
    10. Victor V. Podinovski & Finn R. Førsund, 2010. "Differential Characteristics of Efficient Frontiers in Data Envelopment Analysis," Operations Research, INFORMS, vol. 58(6), pages 1743-1754, December.
    11. Walheer, Barnabé, 2018. "Scale efficiency for multi-output cost minimizing producers: The case of the US electricity plants," Energy Economics, Elsevier, vol. 70(C), pages 26-36.
    12. Cesaroni, Giovanni & Giovannola, Daniele, 2015. "Average-cost efficiency and optimal scale sizes in non-parametric analysis," European Journal of Operational Research, Elsevier, vol. 242(1), pages 121-133.
    13. Zhu, Joe, 2000. "Further discussion on linear production functions and DEA," European Journal of Operational Research, Elsevier, vol. 127(3), pages 611-618, December.
    14. Michael Zschille, 2014. "Nonparametric measures of returns to scale: an application to German water supply," Empirical Economics, Springer, vol. 47(3), pages 1029-1053, November.
    15. Mehdiloo, Mahmood & Podinovski, Victor V., 2019. "Selective strong and weak disposability in efficiency analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1154-1169.
    16. Ole Bent Olesen & Niels Christian Petersen & Victor V. Podinovski, 2022. "Scale characteristics of variable returns-to-scale production technologies with ratio inputs and outputs," Annals of Operations Research, Springer, vol. 318(1), pages 383-423, November.
    17. Zelenyuk, Valentin, 2015. "Aggregation of scale efficiency," European Journal of Operational Research, Elsevier, vol. 240(1), pages 269-277.
    18. Sahoo, Biresh K & Khoveyni, Mohammad & Eslami, Robabeh & Chaudhury, Pradipta, 2016. "Returns to scale and most productive scale size in DEA with negative data," European Journal of Operational Research, Elsevier, vol. 255(2), pages 545-558.
    19. Podinovski, Victor V., 2017. "Returns to scale in convex production technologies," European Journal of Operational Research, Elsevier, vol. 258(3), pages 970-982.
    20. Panagiotis Ravanos & Giannis Karagiannis, 2022. "In search for the most preferred solution in value efficiency analysis," Journal of Productivity Analysis, Springer, vol. 58(2), pages 203-220, December.

    More about this item

    Keywords

    DEA; efficiency;

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sdueko:2011_004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Astrid Holm Nielsen (email available below). General contact details of provider: https://edirc.repec.org/data/okioudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.