IDEAS home Printed from https://ideas.repec.org/p/hhs/osloec/2019_009.html
   My bibliography  Save this paper

Environmental Performance Measurement: The Rise and Fall of Shephard-inspired Measures

Author

Listed:

Abstract

The generation of unintended residuals when producing intended outputs is the key factor behind our serious problems with pollution. The way this joint production is modelled is therefore of crucial importance for our understanding and empirical efforts to change economic activities in order to reduce harmful residuals. Estimation of efficiency and productivity when producing both intended and unintended outputs has emerged as an important research strand. The most popular models in the field are based on weak disposability between the two types of outputs and null jointness introduced by Shephard. The purpose of the paper is to show that these model types are seriously flawed. An alternative model based on the production theory of Frisch introduces technical jointness for the case when the unintended output is unavoidable. The materials balance based on physical laws tells us that when material inputs are used unintended outputs are unavoidable. The modelling of joint production must therefore reflect this. A key feature is that the two types of outputs should be separated using different production relations. This facilitates estimating two independent frontiers and calculating efficiency scores and Malmquist productivity changes for the two types using a non-parametric DEA model.

Suggested Citation

  • Førsund, Finn, 2019. "Environmental Performance Measurement: The Rise and Fall of Shephard-inspired Measures," Memorandum 9/2019, Oslo University, Department of Economics.
  • Handle: RePEc:hhs:osloec:2019_009
    as

    Download full text from publisher

    File URL: https://www.sv.uio.no/econ/english/research/Memoranda/working-papers/pdf-files/2019/memo-09-2019.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K Hervé Dakpo & Philippe Jeanneaux & Laure Latruffe, 2017. "Greenhouse gas emissions and efficiency in French sheep meat farming: A non-parametric framework of pollution-adjusted technologies," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(1), pages 33-65.
    2. Sushama Murty & R. Robert Russell, 2018. "Modeling emission-generating technologies: reconciliation of axiomatic and by-production approaches," Empirical Economics, Springer, vol. 54(1), pages 7-30, February.
    3. Sushama Murty & Resham Nagpal, "undated". "Measuring output-based technical efficiency of Indian coal-based thermal power plants: A by-production approach," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-07, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    4. Sushama Murty & Resham Nagpal, 2019. "Measuring output-based technical efficiency of Indian coal-based thermal power plants," Indian Growth and Development Review, Emerald Group Publishing Limited, vol. 13(1), pages 175-206, June.
    5. Pethig, Rudiger, 2006. "Non-linear production, abatement, pollution and materials balance reconsidered," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 185-204, March.
    6. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finn R. Førsund, 2021. "Performance measurement and joint production of intended and unintended outputs," Journal of Productivity Analysis, Springer, vol. 55(3), pages 157-175, June.
    2. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    3. Sushama Murty & Resham Nagpal, "undated". "Weighted index of graph efficiency improvements for a by-production technology and its application to Indian coal-based thermal power sector," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-08, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    4. K. Hervé Dakpo & Yann Desjeux & Laure Latruffe, 2023. "Cost of abating excess nitrogen on wheat plots in France: An assessment with multi‐technology modelling," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 800-815, September.
    5. Sushama Murty & R. Robert Russell, 2021. "A commentary on “Performance measurement and joint production of intended and unintended outputs” by Finn Førsund," Journal of Productivity Analysis, Springer, vol. 55(3), pages 177-184, June.
    6. Niu, Yiran & Boussemart, Jean-Philippe & Shen, Zhiyang & Vardanyan, Michael, 2024. "Performance evaluation using multi-stage production frameworks: Assessing the tradeoffs among the economic, environmental, and social well-being," European Journal of Operational Research, Elsevier, vol. 318(3), pages 1000-1013.
    7. Fang, Lei, 2020. "Opening the “black box” of environmental production technology in a nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 769-780.
    8. Juan Aparicio & Magdalena Kapelko & Lidia Ortiz, 2021. "Modelling environmental inefficiency under a quota system," Operational Research, Springer, vol. 21(2), pages 1097-1124, June.
    9. Sushama Murty & Resham Nagpal, "undated". "Choice of models for emission-generating technologies and designing technical efficiency improvements," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 19-01, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    10. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    11. Gopalan, Ram & Hachadoorian, Lee & Kimbrough, Steven O. & Murphy, Frederic H., 2024. "Selecting good redistricting plans from a large pool of available plans using the efficient frontier," Omega, Elsevier, vol. 124(C).
    12. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
    13. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    14. repec:zbw:inwedp:752021 is not listed on IDEAS
    15. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    16. Rajesh Singh & Quinn Weninger, 2017. "Cap-and-trade under transactions costs and factor irreversibility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(2), pages 357-407, August.
    17. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    18. Sushama Murty & Resham Nagpal, "undated". "Measuring output-based technical efficiency of Indian coal-based thermal power plants: A by-production approach," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-07, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    19. Jean-Philippe Boussemart & Hervé Leleu & Zhiyang Shen & Vivian Valdmanis, 2020. "Performance analysis for three pillars of sustainability," Journal of Productivity Analysis, Springer, vol. 53(3), pages 305-320, June.
    20. Kenneth Rødseth & Eirik Romstad, 2014. "Environmental Regulations, Producer Responses, and Secondary Benefits: Carbon Dioxide Reductions Under the Acid Rain Program," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 111-135, September.
    21. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.

    More about this item

    Keywords

    Intended and unintended outputs; joint production; Materials balance; Technical jointness; pollution; weak disposability;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:osloec:2019_009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mari Strønstad Øverås (email available below). General contact details of provider: https://edirc.repec.org/data/souiono.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.