IDEAS home Printed from https://ideas.repec.org/p/hhs/nhhfms/2014_008.html
   My bibliography  Save this paper

The Analysis of Split Graphs in Social Networks Based on the K-Cardinality Assignment Problem

Author

Listed:
  • Belik, Ivan

    (Dept. of Business and Management Science, Norwegian School of Economics)

Abstract

In terms of social networks, split graphs correspond to the variety of interpersonal and intergroup relations. In this paper we analyse the interaction between the cliques (socially strong and trusty groups) and the independent sets (fragmented and non-connected groups of people) as the basic components of any split graph. Based on the Semi-Lagrangean relaxation for the k-cardinality assignment problem, we show the way of minimizing the socially risky interactions between the cliques and the independent sets within the social network.

Suggested Citation

  • Belik, Ivan, 2014. "The Analysis of Split Graphs in Social Networks Based on the K-Cardinality Assignment Problem," Discussion Papers 2014/8, Norwegian School of Economics, Department of Business and Management Science.
  • Handle: RePEc:hhs:nhhfms:2014_008
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11250/194970
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Luce & Albert Perry, 1949. "A method of matrix analysis of group structure," Psychometrika, Springer;The Psychometric Society, vol. 14(2), pages 95-116, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Celant, 2013. "Two-mode networks: the measurement of efficiency in the profiles of actors’ participation in the occasions," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(6), pages 3289-3302, October.
    2. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    3. Le Breton, Michel & Weber, Shlomo, 2009. "Existence of Pure Strategies Nash Equilibria in Social Interaction Games with Dyadic Externalities," CEPR Discussion Papers 7279, C.E.P.R. Discussion Papers.
    4. Zhu, Yongjun & Yan, Erjia, 2017. "Examining academic ranking and inequality in library and information science through faculty hiring networks," Journal of Informetrics, Elsevier, vol. 11(2), pages 641-654.
    5. Zhuqi Miao & Balabhaskar Balasundaram & Eduardo L. Pasiliao, 2014. "An exact algorithm for the maximum probabilistic clique problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 105-120, July.
    6. Eric van Diessen & Willemiek J E M Zweiphenning & Floor E Jansen & Cornelis J Stam & Kees P J Braun & Willem M Otte, 2014. "Brain Network Organization in Focal Epilepsy: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-21, December.
    7. Henderson, Geraldine R. & Iacobucci, Dawn & Calder, Bobby J., 1998. "Brand diagnostics: Mapping branding effects using consumer associative networks," European Journal of Operational Research, Elsevier, vol. 111(2), pages 306-327, December.
    8. Etienne Farvaque & Frédéric Gannon, 2018. "Profiling giants: the networks and influence of Buchanan and Tullock," Public Choice, Springer, vol. 175(3), pages 277-302, June.
    9. Sokolov, Denis, 2022. "Shapley value for TU-games with multiple memberships and externalities," Mathematical Social Sciences, Elsevier, vol. 119(C), pages 76-90.
    10. Giuliani, Elisa & Pietrobelli, Carlo, 2014. "Social Network Analysis Methodologies for the Evaluation of Cluster Development Programs," Papers in Innovation Studies 2014/11, Lund University, CIRCLE - Centre for Innovation Research.
    11. Oleksandra Yezerska & Sergiy Butenko & Vladimir L. Boginski, 2018. "Detecting robust cliques in graphs subject to uncertain edge failures," Annals of Operations Research, Springer, vol. 262(1), pages 109-132, March.
    12. Yilin Hong & Zhan Zhang & Xinyi Fang & Linjun Lu, 2024. "Evaluating the Dynamic Comprehensive Resilience of Urban Road Network: A Case Study of Rainstorm in Xi’an, China," Land, MDPI, vol. 13(11), pages 1-24, November.
    13. Vanhaverbeke, W.P.M. & Beerkens, B.E. & Duysters, G.M., 2003. "Explorative and exploitative learning strategies in technology-based alliance networks," Working Papers 03.22, Eindhoven Center for Innovation Studies.
    14. Mingshuo Nie & Dongming Chen & Dongqi Wang, 2022. "Graph Embedding Method Based on Biased Walking for Link Prediction," Mathematics, MDPI, vol. 10(20), pages 1-13, October.
    15. K. Parthasarathy, 1964. "Enumeration of paths in digraphs," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 153-165, June.
    16. Zhong, Haonan & Mahdavi Pajouh, Foad & Prokopyev, Oleg A., 2021. "Finding influential groups in networked systems: The most degree-central clique problem," Omega, Elsevier, vol. 101(C).
    17. Nasirian, Farzaneh & Mahdavi Pajouh, Foad & Balasundaram, Balabhaskar, 2020. "Detecting a most closeness-central clique in complex networks," European Journal of Operational Research, Elsevier, vol. 283(2), pages 461-475.
    18. Alessio Troiani, 2024. "Probabilistic Cellular Automata Monte Carlo for the Maximum Clique Problem," Mathematics, MDPI, vol. 12(18), pages 1-16, September.
    19. Robert Mokken, 1979. "Cliques, clubs and clans," Quality & Quantity: International Journal of Methodology, Springer, vol. 13(2), pages 161-173, April.
    20. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.

    More about this item

    Keywords

    Social networks; split graphs; k-cardinality assignment;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:nhhfms:2014_008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stein Fossen (email available below). General contact details of provider: https://edirc.repec.org/data/dfnhhno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.