Correlation and efficiency of propensity score-based estimators for average causal effects
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003.
"Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score,"
Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
- Guido Imbens, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometric Society World Congress 2000 Contributed Papers 1166, Econometric Society.
- Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
- Millimet, Daniel L. & Tchernis, Rusty, 2009.
"On the Specification of Propensity Scores, With Applications to the Analysis of Trade Policies,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 397-415.
- Daniel Millimet & Rusty Tchernis, 2006. "On the Specification of Propensity Scores: with Applications to the Analysis of Trade Policies," CAEPR Working Papers 2006-013, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington, revised Jan 2008.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Pingel, Ronnie, 2014. "Some approximations of the logistic distribution with application to the covariance matrix of logistic regression," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 63-68.
- Jinyong Hahn, 2004. "Functional Restriction and Efficiency in Causal Inference," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 73-76, February.
- Xavier De Luna & Ingeborg Waernbaum & Thomas S. Richardson, 2011. "Covariate selection for the nonparametric estimation of an average treatment effect," Biometrika, Biometrika Trust, vol. 98(4), pages 861-875.
- Halbert White & Xun Lu, 2011. "Causal Diagrams for Treatment Effect Estimation with Application to Efficient Covariate Selection," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1453-1459, November.
- Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Kitagawa, Toru & Muris, Chris, 2016.
"Model averaging in semiparametric estimation of treatment effects,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
- Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP46/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 46/15, Institute for Fiscal Studies.
- Persson, Emma & Häggström, Jenny & Waernbaum, Ingeborg & de Luna, Xavier, 2017. "Data-driven algorithms for dimension reduction in causal inference," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 280-292.
- Xun Lu, 2015. "A Covariate Selection Criterion for Estimation of Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 506-522, October.
- Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019.
"Specification tests for the propensity score,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
- Pedro H. C. Sant'Anna & Xiaojun Song, 2016. "Specification Tests for the Propensity Score," Papers 1611.06217, arXiv.org, revised Feb 2019.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017.
"The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation,"
Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2015. "The Finite Sample Performance of Semi- and Nonparametric Estimators for Treatment Effects and Policy Evaluation," IZA Discussion Papers 8756, Institute of Labor Economics (IZA).
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2015. "The finite sample performance of semi- and nonparametric estimators for treatment effects and policy evaluation," FSES Working Papers 454, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Toru Kitagawa & Chris Muris, 2013.
"Covariate selection and model averaging in semiparametric estimation of treatment effects,"
CeMMAP working papers
CWP61/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 61/13, Institute for Fiscal Studies.
- Arun Advani & Toru Kitagawa & Tymon Słoczyński, 2019.
"Mostly harmless simulations? Using Monte Carlo studies for estimator selection,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 893-910, September.
- Arun Advani & Toru Kitagawa & Tymon S{l}oczy'nski, 2018. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," Papers 1809.09527, arXiv.org, revised Apr 2019.
- Advani, Arun & Kitagawa, Toru & Sloczynski, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," CAGE Online Working Paper Series 411, Competitive Advantage in the Global Economy (CAGE).
- Advani, Arun & Kitagawa, Toru & Słoczyński, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," The Warwick Economics Research Paper Series (TWERPS) 1192, University of Warwick, Department of Economics.
- Steven Lehrer & Gregory Kordas, 2013.
"Matching using semiparametric propensity scores,"
Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
- Steven Lehrer & Gregory Kordas, 2004. "Matching using Semiparametric Propensity Scores," Econometric Society 2004 North American Summer Meetings 441, Econometric Society.
- Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020.
"The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
- Bodory, Hugo & Camponovo, Lorenzo & Huber, Martin & Lechner, Michael, 2016. "The finite sample performance of inference methods for propensity score matching and weighting estimators," Economics Working Paper Series 1604, University of St. Gallen, School of Economics and Political Science.
- Bodory, Hugo & Camponovo, Lorenzo & Huber, Martin & Lechner, Michael, 2016. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," IZA Discussion Papers 9706, Institute of Labor Economics (IZA).
- Bodory, Hugo & Huber, Martin & Camponovo, Lorenzo & Lechner, Michael, 2016. "The finite sample performance of inference methods for propensity score matching and weighting estimators," FSES Working Papers 466, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta & Darwin Ugarte Ontiveros, 2021.
"Outliers in Semi-Parametric Estimation of Treatment Effects,"
Econometrics, MDPI, vol. 9(2), pages 1-32, April.
- Darwin Ugarte Ontiveros & Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta, 2017. "Outliers in semi-parametric Estimation of Treatment Effects," Documentos de Trabajo de Valor Público 15810, Universidad EAFIT.
- Darwin Ugarte Ontiveros & Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta, 2017. "Outliers in semi-parametric Estimation of Treatment Effects," Development Research Working Paper Series 06/2017, Institute for Advanced Development Studies.
- Advani, Arun & Sloczynski, Tymon, 2013.
"Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies,"
IZA Discussion Papers
7874, Institute of Labor Economics (IZA).
- Advani, Arun & Kitagawa, Toru & Sloczynski, Tymon, 2018. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 11862, Institute of Labor Economics (IZA).
- Arun Advani & Toru Kitagawa & Tymon Sloczynski, 2018. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," Working Papers 124, Brandeis University, Department of Economics and International Business School.
- Arun Advani & Toru Kitagawa & Tymon Sloczynski, 2018. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers CWP56/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arun Advani & Tymon Sloczynski, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers CWP64/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arun Advani & Tymon Słoczyński, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers 64/13, Institute for Fiscal Studies.
- Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010.
"How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score,"
IZA Discussion Papers
5268, Institute of Labor Economics (IZA).
- Martin Huber & Michael Lechner & Conny Wunsch, 2010. "How to control for many covariates? Reliable estimators based on the propensity score," University of St. Gallen Department of Economics working paper series 2010 2010-30, Department of Economics, University of St. Gallen.
- Hugo Bodory & Martin Huber & Michael Lechner, 2024.
"The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates,"
Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.
- Hugo Bodory & Martin Huber & Michael Lechner, 2022. "The finite sample performance of instrumental variable-based estimators of the Local Average Treatment Effect when controlling for covariates," Papers 2212.07379, arXiv.org.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
- Lee, Ying-Ying, 2018. "Efficient propensity score regression estimators of multivalued treatment effects for the treated," Journal of Econometrics, Elsevier, vol. 204(2), pages 207-222.
- Tymon Słoczyński, 2015.
"The Oaxaca–Blinder Unexplained Component as a Treatment Effects Estimator,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(4), pages 588-604, August.
- Tymon Sloczynski, 2012. "The Oaxaca-Blinder unexplained component as a treatment effects estimator," Working Papers 61, Department of Applied Econometrics, Warsaw School of Economics.
- Słoczyński, Tymon, 2013. "The Oaxaca–Blinder Unexplained Component as a Treatment Effects Estimator," MPRA Paper 50660, University Library of Munich, Germany.
- Christoph Rothe, 2017.
"Robust Confidence Intervals for Average Treatment Effects Under Limited Overlap,"
Econometrica, Econometric Society, vol. 85, pages 645-660, March.
- Rothe, Christoph, 2015. "Robust Confidence Intervals for Average Treatment Effects under Limited Overlap," IZA Discussion Papers 8758, Institute of Labor Economics (IZA).
More about this item
Keywords
Double robust; inverse probability weighting; matching; observational study;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2016-03-06 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:ifauwp:2015_003. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ali Ghooloo (email available below). General contact details of provider: https://edirc.repec.org/data/ifagvse.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.