IDEAS home Printed from https://ideas.repec.org/p/hhs/hastef/0642.html
   My bibliography  Save this paper

(M)oral Hazard?

Author

Listed:

Abstract

Would you go to the dentist more often if it were free? Observational data is here used to analyze the impact of full-coverage insurance on dental care utilization using different identification strategies. The challenge of assessing the bite of moral hazard without an experimental study design is to separate it from adverse selection, as agents act on private and generally unobservable information. By utilizing a quasi-experimental feature of the insurance scheme the moral hazard effect is identified on observables, and by having access to an instrument the effect is identified with IV. Moral hazard is assessed using both difference-in-differences and cross-sectional estimations.

Suggested Citation

  • Grönqvist, Erik, 2006. "(M)oral Hazard?," SSE/EFI Working Paper Series in Economics and Finance 642, Stockholm School of Economics.
  • Handle: RePEc:hhs:hastef:0642
    as

    Download full text from publisher

    File URL: http://swopec.hhs.se/hastef/papers/hastef0642.pdf
    File Function: Complete Rendering
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manning, Willard G, et al, 1987. "Health Insurance and the Demand for Medical Care: Evidence from a Randomized Experiment," American Economic Review, American Economic Association, vol. 77(3), pages 251-277, June.
    2. Angrist, Joshua D. & Krueger, Alan B., 1999. "Empirical strategies in labor economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 23, pages 1277-1366, Elsevier.
    3. Frank Windmeijer, 2002. "ExpEnd, A Gauss programme for non-linear GMM estimation of exponential models with endogenous regressors for cross section and panel data," CeMMAP working papers CWP14/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Lechner, Michael, 1999. "Identification and Estimation of Causal Effects of Multiple Treatments Under the Conditional Independence Assumption," IZA Discussion Papers 91, Institute of Labor Economics (IZA).
    5. Grönqvist, Erik, 2004. "Does Adverse Selection Matter? Evidence from a Natural Experiment," SSE/EFI Working Paper Series in Economics and Finance 575, Stockholm School of Economics.
    6. Georges Dionne & Christian Gourieroux & Charles Vanasse, 2001. "Testing for Evidence of Adverse Selection in the Automobile Insurance Market: A Comment," Journal of Political Economy, University of Chicago Press, vol. 109(2), pages 444-473, April.
    7. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    8. Jaap H. Abbring & Pierre-André Chiappori & Jean Pinquet, 2003. "Moral Hazard and Dynamic Insurance Data," Journal of the European Economic Association, MIT Press, vol. 1(4), pages 767-820, June.
    9. Jaap H. Abbring & Pierre-André Chiappori & Jean Pinquet, 2003. "Moral Hazard and Dynamic Insurance Data," Journal of the European Economic Association, MIT Press, vol. 1(4), pages 767-820, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Soika, 2018. "Moral Hazard and Advantageous Selection in Private Disability Insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 43(1), pages 97-125, January.
    2. Alma Cohen & Peter Siegelman, 2010. "Testing for Adverse Selection in Insurance Markets," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(1), pages 39-84, March.
    3. Xiaoqi Zhang & Yi Chen & Yi Yao, 2021. "Dynamic information asymmetry in micro health insurance: implications for sustainability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 46(3), pages 468-507, July.
    4. Dionne, Georges, 2012. "The empirical measure of information problems with emphasis on insurance fraud and dynamic data," Working Papers 12-10, HEC Montreal, Canada Research Chair in Risk Management.
    5. Georges Dionne & Jean Pinquet & Mathieu Maurice & Charles Vanasse, 2011. "Incentive Mechanisms for Safe Driving: A Comparative Analysis with Dynamic Data," The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 218-227, February.
    6. Hyojoung Kim & Doyoung Kim & Subin Im & James W. Hardin, 2009. "Evidence of Asymmetric Information in the Automobile Insurance Market: Dichotomous Versus Multinomial Measurement of Insurance Coverage," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(2), pages 343-366, June.
    7. Michael Lechner & Ruth Miquel & Conny Wunsch, 2011. "Long‐Run Effects Of Public Sector Sponsored Training In West Germany," Journal of the European Economic Association, European Economic Association, vol. 9(4), pages 742-784, August.
    8. Jean Pinquet & Georges Dionne & Charles Vanasse & Mathieu Maurice, 2007. "Point-record incentives, asymmetric information and dynamic data," Working Papers hal-00243056, HAL.
    9. Liran Einav & Amy Finkelstein & Mark R. Cullen, 2010. "Estimating Welfare in Insurance Markets Using Variation in Prices," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 877-921.
    10. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    11. Hanming Fang & Michael P. Keane & Dan Silverman, 2008. "Sources of Advantageous Selection: Evidence from the Medigap Insurance Market," Journal of Political Economy, University of Chicago Press, vol. 116(2), pages 303-350, April.
    12. Georges Dionne & Pierre-Carl Michaud & Maki Dahchour, 2004. "Separating Moral Hazard from Adverse Selection in Automobile Insurance: Longitudinal Evidence from France," Cahiers de recherche 0420, CIRPEE.
    13. Raj Chetty & Amy Finkelstein, 2012. "Social Insurance: Connecting Theory to Data," NBER Working Papers 18433, National Bureau of Economic Research, Inc.
    14. Georges Dionne & Casey G. Rothschild, 2011. "Risk Classification in Insurance Contracting," Cahiers de recherche 1137, CIRPEE.
    15. Georges Dionne & Pierre-Carl Michaud & Maki Dahchour, 2013. "Separating Moral Hazard From Adverse Selection And Learning In Automobile Insurance: Longitudinal Evidence From France," Journal of the European Economic Association, European Economic Association, vol. 11(4), pages 897-917, August.
    16. Shi, Peng & Valdez, Emiliano A., 2011. "A copula approach to test asymmetric information with applications to predictive modeling," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 226-239, September.
    17. Jedidi, Helmi & Dionne, Georges, 2024. "Nonparametric testing for information asymmetry in the mortgage servicing market," Working Papers 19-1, HEC Montreal, Canada Research Chair in Risk Management, revised 28 Oct 2019.
    18. Karl Ove Aarbu, 2017. "Asymmetric Information in the Home Insurance Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(1), pages 35-72, March.
    19. Dionne, Georges & Michaud, Pierre-Carl & Pinquet, Jean, 2013. "A review of recent theoretical and empirical analyses of asymmetric information in road safety and automobile insurance," Research in Transportation Economics, Elsevier, vol. 43(1), pages 85-97.
    20. Jennifer L. Wang & Ching‐Fan Chung & Larry Y. Tzeng, 2008. "An Empirical Analysis of the Effects of Increasing Deductibles on Moral Hazard," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 551-566, September.

    More about this item

    Keywords

    Asymmetric information; Moral Hazard; Health Insurance; Porpensity Score Matching; IV;
    All these keywords.

    JEL classification:

    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • I11 - Health, Education, and Welfare - - Health - - - Analysis of Health Care Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helena Lundin (email available below). General contact details of provider: https://edirc.repec.org/data/erhhsse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.