IDEAS home Printed from https://ideas.repec.org/p/hhs/gunwpe/0839.html
   My bibliography  Save this paper

Saddlepoint approximations for credit portfolio distributions with applications in equity risk management

Author

Listed:
  • Herbertsson, Alexander

    (Department of Economics, School of Business, Economics and Law, Göteborg University)

Abstract

We study saddlepoint approximations to the tail-distribution for credit portfolio losses in continuous time intensity based models under conditional independent homogeneous settings. In such models, conditional on the filtration generated by the individual default intensity up to time t, the conditional number of defaults distribution (in the portfolio) will be a binomial distribution that is a function of a factor Z_t which typically is the integrated default intensity up to time t. This will lead to an explicit closed-form solution of the saddlepoint equation for each point used in the number of defaults distribution when conditioning on the factor Z_t, and we hence do not have to solve the saddlepoint equation numerically. The ordo-complexity of our algorithm computing the whole distribution for the number of defaults will be linear in the portfolio size, which is a dramatic improvement compared to e.g. recursive methods which have a quadratic ordo-complexity in the portfolio size. The individual default intensities can be arbitrary as long as they are conditionally independent given the factor Z_t in a homogeneous portfolio. We also outline how our method for computing the number of defaults distribution can be extend to heterogeneous portfolios. Furthermore, we show that all our results can be extended to hold for any factor copula model. We give several numerical applications and in particular, in a setting where the individual default intensities follow a CIR process we study both the tail distribution and the number of defaults distribution. We then repeat similar numerical studies in a one-factor Gaussian copula model. We also numerically benchmark our saddlepoint method to other computational methods. Finally, we apply of our saddlepoint method to efficiently investigate Value-at-Risk for equity portfolios where the individual stock prices have simultaneous downward jumps at the defaults of an exogenous group of defaultable entities driven by a one-factor Gaussian copula model were we focus on Value-at-Risk as function of the default correlation parameter in the one-factor Gaussian copula model.

Suggested Citation

  • Herbertsson, Alexander, 2023. "Saddlepoint approximations for credit portfolio distributions with applications in equity risk management," Working Papers in Economics 839, University of Gothenburg, Department of Economics.
  • Handle: RePEc:hhs:gunwpe:0839
    as

    Download full text from publisher

    File URL: https://gupea.ub.gu.se/handle/2077/79447
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Norbert Hofmann & Eckhard Platen, 2000. "Approximating Large Diversified Portfolios," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 77-88, January.
    3. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    4. Frey, Rüdiger & Backhaus, Jochen, 2010. "Dynamic hedging of synthetic CDO tranches with spread risk and default contagion," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 710-724, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herbertsson, Alexander, 2022. "Saddlepoint approximations for credit portfolios with stochastic recoveries," Working Papers in Economics 823, University of Gothenburg, Department of Economics.
    2. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    3. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    4. Albrecher, Hansjoerg & Guillaume, Florence & Schoutens, Wim, 2013. "Implied liquidity: Model sensitivity," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 48-67.
    5. Li, Qian & Wang, Li, 2024. "Option pricing under jump diffusion model," Statistics & Probability Letters, Elsevier, vol. 211(C).
    6. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    7. repec:uts:finphd:41 is not listed on IDEAS
    8. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    9. Zhe Zhao & Zhenyu Cui & Ionuţ Florescu, 2018. "VIX derivatives valuation and estimation based on closed-form series expansions," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-18, June.
    10. Teng, Ye & Zhang, Zhimin, 2023. "Finite-time expected present value of operating costs until ruin in a Cox risk model with periodic observation," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    11. Wei Lin & Shenghong Li & Xingguo Luo & Shane Chern, 2015. "Consistent Pricing of VIX and Equity Derivatives with the 4/2 Stochastic Volatility Plus Jumps Model," Papers 1510.01172, arXiv.org, revised Nov 2015.
    12. Herbertsson, Alexander, 2023. "Risk management of stock portfolios with jumps at exogenous default events," Working Papers in Economics 836, University of Gothenburg, Department of Economics.
    13. Francesca Lilla, 2021. "Volatility Bursts: A discrete-time option model with multiple volatility components," Temi di discussione (Economic working papers) 1336, Bank of Italy, Economic Research and International Relations Area.
    14. Zhang, Hanwen & Dang, Duy-Minh, 2024. "A monotone numerical integration method for mean–variance portfolio optimization under jump-diffusion models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 112-140.
    15. Singor, Stefan N. & Grzelak, Lech A. & van Bragt, David D.B. & Oosterlee, Cornelis W., 2013. "Pricing inflation products with stochastic volatility and stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 286-299.
    16. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019, January-A.
    17. Lech A. Grzelak & Cornelis W. Oosterlee, 2012. "On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 1-35, February.
    18. Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
    19. Long Teng, 2021. "The Heston Model with Time-Dependent Correlation Driven by Isospectral Flows," Mathematics, MDPI, vol. 9(9), pages 1-8, April.
    20. Maarten Wyns & Jacques Du Toit, 2016. "A Finite Volume - Alternating Direction Implicit Approach for the Calibration of Stochastic Local Volatility Models," Papers 1611.02961, arXiv.org.
    21. J. G. L'opez-Salas & M. Su'arez-Taboada & M. J. Castro & A. M. Ferreiro-Ferreiro & J. A. Garc'ia-Rodr'iguez, 2024. "A second order finite volume IMEX Runge-Kutta scheme for two dimensional PDEs in finance," Papers 2410.02925, arXiv.org.

    More about this item

    Keywords

    credit portfolio risk; intensity-based models; factor models; credit copula models; Value-at-Risk; conditional independent dependence modelling; saddlepoint-methods; Fourier-transform methods; numerical methods; equity portfolio risk; stock price modelling with jumps;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunwpe:0839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jessica Oscarsson (email available below). General contact details of provider: https://edirc.repec.org/data/naiguse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.