IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.02925.html
   My bibliography  Save this paper

A second order finite volume IMEX Runge-Kutta scheme for two dimensional PDEs in finance

Author

Listed:
  • J. G. L'opez-Salas
  • M. Su'arez-Taboada
  • M. J. Castro
  • A. M. Ferreiro-Ferreiro
  • J. A. Garc'ia-Rodr'iguez

Abstract

In this article we present a novel and general methodology for building second order finite volume implicit-explicit (IMEX) numerical schemes for solving two dimensional financial parabolic PDEs with mixed derivatives. In particular, applications to basket and Heston models are presented. The obtained numerical schemes have excellent properties and are able to overcome the well-documented difficulties related with numerical approximations in the financial literature. The methods achieve true second order convergence with non-regular initial conditions. Besides, the IMEX time integrator allows to overcome the tiny time-step induced by the diffusive term in the explicit schemes, also providing very accurate and non-oscillatory approximations of the Greeks. Finally, in order to assess all the aforementioned good properties of the developed numerical schemes, we compute extremely accurate semi-analytic solutions using multi-dimensional Fourier cosine expansions. A novel technique to truncate the Fourier series for basket options is presented and it is efficiently implemented using multi-GPUs.

Suggested Citation

  • J. G. L'opez-Salas & M. Su'arez-Taboada & M. J. Castro & A. M. Ferreiro-Ferreiro & J. A. Garc'ia-Rodr'iguez, 2024. "A second order finite volume IMEX Runge-Kutta scheme for two dimensional PDEs in finance," Papers 2410.02925, arXiv.org.
  • Handle: RePEc:arx:papers:2410.02925
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.02925
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    2. Yves Achdou & Olivier Pironneau, 2002. "Volatility Smile By Multilevel Least Square," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(06), pages 619-643.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Marjon Ruijter & Kees Oosterlee, 2012. "Two-dimensional Fourier cosine series expansion method for pricing financial options," CPB Discussion Paper 225, CPB Netherlands Bureau for Economic Policy Analysis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    2. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    3. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    4. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    5. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    6. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    7. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    8. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    10. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    11. Carl Chiarella & Boda Kang & Gunter H. Meyer, 2010. "The Evaluation Of Barrier Option Prices Under Stochastic Volatility," Research Paper Series 266, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    13. Kristensen, Dennis, 2008. "Estimation of partial differential equations with applications in finance," Journal of Econometrics, Elsevier, vol. 144(2), pages 392-408, June.
    14. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    15. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    16. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    17. Li, Qian & Wang, Li, 2024. "Option pricing under jump diffusion model," Statistics & Probability Letters, Elsevier, vol. 211(C).
    18. repec:uts:finphd:41 is not listed on IDEAS
    19. Alexander Lipton, 2024. "Hydrodynamics of Markets:Hidden Links Between Physics and Finance," Papers 2403.09761, arXiv.org.
    20. Hélyette Geman & Dilip B. Madan & Marc Yor, 2007. "Probing Option Prices for Information," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 115-131, March.
    21. Francesco Rotondi, 2019. "American Options on High Dividend Securities: A Numerical Investigation," Risks, MDPI, vol. 7(2), pages 1-20, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.02925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.