IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-00618467.html
   My bibliography  Save this paper

Testing interval forecasts: a GMM-based approach

Author

Listed:
  • Elena-Ivona Dumitrescu

    (LEO - Laboratoire d'économie d'Orleans [2008-2011] - UO - Université d'Orléans - CNRS - Centre National de la Recherche Scientifique)

  • Christophe Hurlin

    (LEO - Laboratoire d'économie d'Orleans [2008-2011] - UO - Université d'Orléans - CNRS - Centre National de la Recherche Scientifique)

  • Jaouad Madkour

    (LEO - Laboratoire d'économie d'Orleans [2008-2011] - UO - Université d'Orléans - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper proposes a new evaluation framework for interval forecasts. Our model free test can be used to evaluate intervals forecasts and High Density Regions, potentially discontinuous and/or asymmetric. Using a simple J-statistic, based on the moments de ned by the orthonormal polynomials associated with the Binomial distribution, this new approach presents many advantages. First, its implementation is extremely easy. Second, it allows for a separate test for unconditional coverage, independence and conditional coverage hypotheses. Third, Monte-Carlo simulations show that for realistic sample sizes, our GMM test has good small-sample properties. These results are corroborated by an empirical application on SP500 and Nikkei stock market indexes. It con rms that using this GMM test leads to major consequences for the ex-post evaluation of interval forecasts produced by linear versus nonlinear models.

Suggested Citation

  • Elena-Ivona Dumitrescu & Christophe Hurlin & Jaouad Madkour, 2011. "Testing interval forecasts: a GMM-based approach," Working Papers halshs-00618467, HAL.
  • Handle: RePEc:hal:wpaper:halshs-00618467
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00618467
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00618467/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    2. Lex Borghans & Frank Cörvers, 2010. "The Americanization of European Higher Education and Research," NBER Chapters, in: American Universities in a Global Market, pages 231-267, National Bureau of Economic Research, Inc.
    3. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 314-343, Spring.
    4. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    5. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    6. Michael P. Clements & Nick Taylor, 2003. "Evaluating interval forecasts of high-frequency financial data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 445-456.
    7. David I. Harvey & Stephen J. Leybourne, 2007. "Testing for time series linearity," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 149-165, March.
    8. Wallis, Kenneth F., 2003. "Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts," International Journal of Forecasting, Elsevier, vol. 19(2), pages 165-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Li, Yushu & Andersson, Jonas, 2014. "A Likelihood Ratio and Markov Chain Based Method to Evaluate Density Forecasting," Discussion Papers 2014/12, Norwegian School of Economics, Department of Business and Management Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena-Ivona DUMITRESCU & Christophe HURLIN & Jaouad MADKOUR, 2011. "Testing Interval Forecasts: A New GMM-based Test," LEO Working Papers / DR LEO 1549, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    2. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 314-343, Spring.
    3. Elena-Ivona DUMITRESCU, 2011. "Backesting Value-at-Risk: From DQ (Dynamic Quantile) to DB (Dynamic Binary) Tests," LEO Working Papers / DR LEO 262, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    4. Sullivan Hu'e & Christophe Hurlin & Yang Lu, 2024. "Backtesting Expected Shortfall: Accounting for both duration and severity with bivariate orthogonal polynomials," Papers 2405.02012, arXiv.org, revised May 2024.
    5. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    6. Amengual, Dante & Carrasco, Marine & Sentana, Enrique, 2020. "Testing distributional assumptions using a continuum of moments," Journal of Econometrics, Elsevier, vol. 218(2), pages 655-689.
    7. Tsyplakov, Alexander, 2014. "Theoretical guidelines for a partially informed forecast examiner," MPRA Paper 55017, University Library of Munich, Germany.
    8. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    9. Ziggel, Daniel & Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2014. "A new set of improved Value-at-Risk backtests," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 29-41.
    10. Dante Amengual & Marine Carrasco & Enrique Sentana, 2017. "Testing Distributional Assumptions Using a Continuum of Moments," Working Papers wp2018_1709, CEMFI.
    11. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    12. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    13. Li, Yushu & Andersson, Jonas, 2014. "A Likelihood Ratio and Markov Chain Based Method to Evaluate Density Forecasting," Discussion Papers 2014/12, Norwegian School of Economics, Department of Business and Management Science.
    14. Thor Pajhede, 2015. "Backtesting Value-at-Risk: A Generalized Markov Framework," Discussion Papers 15-18, University of Copenhagen. Department of Economics.
    15. Jean‐Marie Dufour & Lynda Khalaf & Marie‐Claude Beaulieu, 2003. "Exact Skewness–Kurtosis Tests for Multivariate Normality and Goodness‐of‐Fit in Multivariate Regressions with Application to Asset Pricing Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 891-906, December.
    16. Thiele, Stephen, 2019. "Detecting underestimates of risk in VaR models," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 12-20.
    17. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    18. Bertrand Candelon & Marc Joëts & Sessi Tokpavi, 2012. "Testing for crude oil markets globalization during extreme price movements," EconomiX Working Papers 2012-28, University of Paris Nanterre, EconomiX.
    19. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    20. Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015. "Forecasting Value-at-Risk using block structure multivariate stochastic volatility models," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.

    More about this item

    Keywords

    GMM; Interval forecasts; High Density Region; GMM.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00618467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.