IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-00347438.html
   My bibliography  Save this paper

Stability Index of Interaction forms

Author

Listed:
  • Joseph M. Abdou

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

An interaction form is an abstract model of interaction based on a description of power distribution among agents over alternatives. A solution known as the settlement set is defined at any preference profile. Necessary and sufficient conditions for stability, that is the existence of settlements, are established. A Stability Index that plays a role similar to that of the Naka- mura Number is defined. It measures, loosely speaking, the complexity of those configurations that prevent a settlement. To any strategic game form one can associate an interaction form in such a way that given an equilibrium concept (e.g. Nash or strong Nash) and a preference profile, settlements of the interaction form are precisely the equilibrium outcomes of the resulting game. As a consequence we have necessary and sufficient conditions for the solvability of game forms. The paper provides a localization of the index in case of unstability.

Suggested Citation

  • Joseph M. Abdou, 2008. "Stability Index of Interaction forms," Working Papers halshs-00347438, HAL.
  • Handle: RePEc:hal:wpaper:halshs-00347438
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00347438
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00347438/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moulin, H. & Peleg, B., 1982. "Cores of effectivity functions and implementation theory," Journal of Mathematical Economics, Elsevier, vol. 10(1), pages 115-145, June.
    2. Abdou, J, 1995. "Nash and Strongly Consistent Two-Player Game Forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(4), pages 345-356.
    3. Abdou, Joseph & Keiding, Hans, 2003. "On necessary and sufficient conditions for solvability of game forms," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 243-260, December.
    4. J. Abdou, 1998. "Rectangularity and Tightness: A Normal Form Characterization of Perfect Information Extensive Game Forms," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 553-567, August.
    5. Abdou, J., 2000. "Exact stability and its applications to strong solvability," Mathematical Social Sciences, Elsevier, vol. 39(3), pages 263-275, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdou, Joseph, 2010. "A stability index for local effectivity functions," Mathematical Social Sciences, Elsevier, vol. 59(3), pages 306-313, May.
    2. Joseph M. Abdou, 2009. "The Structure of Unstable Power Systems," Post-Print halshs-00392515, HAL.
    3. Abdou, Joseph & Keiding, Hans, 2003. "On necessary and sufficient conditions for solvability of game forms," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 243-260, December.
    4. Abdou, J., 1998. "Tight and Effectively Rectangular Game Forms: A Nash Solvable Class," Games and Economic Behavior, Elsevier, vol. 23(1), pages 1-11, April.
    5. Joseph Abdou, 2012. "The structure of unstable power mechanisms," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(2), pages 389-415, June.
    6. Joseph Abdou, 2012. "Stability and index of the meet game on a lattice," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 775-789, November.
    7. repec:hal:wpaper:halshs-00633589 is not listed on IDEAS
    8. Bezalel Peleg & Ariel Procaccia, 2010. "Implementation by mediated equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 191-207, March.
    9. Abdou, J., 2000. "Exact stability and its applications to strong solvability," Mathematical Social Sciences, Elsevier, vol. 39(3), pages 263-275, May.
    10. Abdou, Joseph & Keiding, Hans, 2009. "Interaction sheaves on continuous domains," Journal of Mathematical Economics, Elsevier, vol. 45(11), pages 708-719, December.
    11. Stefano Vannucci, 2004. "On Game Formats and Chu Spaces," Department of Economics University of Siena 417, Department of Economics, University of Siena.
    12. Gonzalez, Stéphane & Lardon, Aymeric, 2021. "Axiomatic foundations of the core for games in effectiveness form," Mathematical Social Sciences, Elsevier, vol. 114(C), pages 28-38.
    13. Stéphane Gonzalez & Aymeric Lardon, 2018. "Axiomatic Foundations of a Unifying Concept of the Core of Games in Effectiveness Form," GREDEG Working Papers 2018-15, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    14. Stéphane Gonzalez & Aymeric Lardon, 2018. "Axiomatic Foundations of a Unifying Core," Working Papers 1817, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    15. Peleg, Bezalel & Peters, Hans & Storcken, Ton, 2002. "Nash consistent representation of constitutions: a reaction to the Gibbard paradox," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 267-287, March.
    16. Nikolai Kukushkin, 2011. "Acyclicity of improvements in finite game forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 147-177, February.
    17. Eyal Winter & Bezalel Peleg, 2002. "original papers : Constitutional implementation," Review of Economic Design, Springer;Society for Economic Design, vol. 7(2), pages 187-204.
    18. Murat R. Sertel & M. Remzi Sanver, 2004. "Strong equilibrium outcomes of voting games ¶are the generalized Condorcet winners," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 22(2), pages 331-347, April.
    19. Bloch, Francis & van den Nouweland, Anne, 2020. "Farsighted stability with heterogeneous expectations," Games and Economic Behavior, Elsevier, vol. 121(C), pages 32-54.
    20. Afacan, Mustafa Oğuz & Bó, Inácio, 2022. "Strategy-proof popular mechanisms," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    21. Peleg, Bezalel & Tijs, Stef, 1996. "The Consistency Principle for Games in Strategic Forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 13-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00347438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.