IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04969515.html
   My bibliography  Save this paper

Learning Markov Processes with Latent Variables

Author

Listed:
  • Ayden Higgins

    (University of Exeter Business School - University of Exeter)

  • Koen Jochmans

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

We present a constructive proof of (nonparametric) identication of the parameters of a bivariate Markov chain when only one of the two random variables is observable. This setup generalizes the hidden Markov model in various useful directions, allowing for state dependence in the observables and allowing the transition kernel of the hidden Markov chain to depend on past observables. We give conditions under which the transition kernel and the distribution of the initial condition are both identied (up to a permutation of the latent states) from the joint distribution of four (or more) time-series observations.

Suggested Citation

  • Ayden Higgins & Koen Jochmans, 2025. "Learning Markov Processes with Latent Variables," Working Papers hal-04969515, HAL.
  • Handle: RePEc:hal:wpaper:hal-04969515
    Note: View the original document on HAL open archive server: https://hal.science/hal-04969515v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04969515v1/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    Dynamic discrete choice; Finite mixture; Markov process; Regime switching; State dependence;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04969515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.