IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00605329.html
   My bibliography  Save this paper

One-year reserve risk including a tail factor: closed formula and bootstrap approaches

Author

Listed:
  • Alexandre Boumezoued

    (R&D, Milliman, Paris - Milliman France)

  • Yoboua Angoua

    (R&D, Milliman, Paris - Milliman France)

  • Laurent Devineau

    (R&D Milliman - Milliman France, SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Jean-Philippe Boisseau

    (R&D, Milliman, Paris - Milliman France)

Abstract

In this paper, we detail the main simulation methods used in practice to measure one-year reserve risk, and describe the bootstrap method providing an empirical distribution of the Claims Development Result (CDR) whose variance is identical to the closed-form expression of the prediction error proposed by Wüthrich et al. (2008). In particular, we integrate the stochastic modeling of a tail factor in the bootstrap procedure. We demonstrate the equivalence with existing analytical results and develop closed-form expressions for the error of prediction including a tail factor. A numerical example is given at the end of this study.

Suggested Citation

  • Alexandre Boumezoued & Yoboua Angoua & Laurent Devineau & Jean-Philippe Boisseau, 2011. "One-year reserve risk including a tail factor: closed formula and bootstrap approaches," Working Papers hal-00605329, HAL.
  • Handle: RePEc:hal:wpaper:hal-00605329
    Note: View the original document on HAL open archive server: https://hal.science/hal-00605329v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00605329v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. England, Peter & Verrall, Richard, 1999. "Analytic and bootstrap estimates of prediction errors in claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 281-293, December.
    2. Buchwalder, Markus & Bühlmann, Hans & Merz, Michael & Wüthrich, Mario V., 2006. "The Mean Square Error of Prediction in the Chain Ladder Reserving Method (Mack and Murphy Revisited)," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 521-542, November.
    3. England, P. D. & Verrall, R. J., 2006. "Predictive Distributions of Outstanding Liabilities in General Insurance," Annals of Actuarial Science, Cambridge University Press, vol. 1(2), pages 221-270, September.
    4. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    5. David Scollnik, 2001. "Actuarial Modeling with MCMC and BUGs," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(2), pages 96-124.
    6. England, Peter, 2002. "Addendum to "Analytic and bootstrap estimates of prediction errors in claims reserving"," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 461-466, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Boumezoued & Yoboua Angoua & Laurent Devineau & Jean-Philippe Boisseau, 2011. "One-year reserve risk including a tail factor: closed formula and bootstrap approaches," Papers 1107.0164, arXiv.org, revised Apr 2012.
    2. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    3. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    4. Steinmetz, Julia & Jentsch, Carsten, 2024. "Bootstrap consistency for the Mack bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 83-121.
    5. Verrall, R.J. & England, P.D., 2005. "Incorporating expert opinion into a stochastic model for the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 355-370, October.
    6. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2022. "Mack-Net model: Blending Mack's model with Recurrent Neural Networks," Papers 2205.07334, arXiv.org.
    7. England, P.D. & Verrall, R.J. & Wüthrich, M.V., 2019. "On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 74-88.
    8. Wahl, Felix & Lindholm, Mathias & Verrall, Richard, 2019. "The collective reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 34-50.
    9. Fröhlich, Andreas & Weng, Annegret, 2018. "Parameter uncertainty and reserve risk under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 130-141.
    10. Hahn, Lukas, 2017. "Multi-year non-life insurance risk of dependent lines of business in the multivariate additive loss reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 71-81.
    11. Jonas Harnau, 2018. "Log-Normal or Over-Dispersed Poisson?," Risks, MDPI, vol. 6(3), pages 1-37, July.
    12. Karthik Sriram & Peng Shi, 2021. "Stochastic loss reserving: A new perspective from a Dirichlet model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 195-230, March.
    13. Alessandro Ricotta & Edoardo Luini, 2019. "Bayesian Estimation of Structure Variables in the Collective Risk Model for Reserve Risk," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 9(2), pages 1-2.
    14. Jonas Harnau, 2018. "Misspecification Tests for Log-Normal and Over-Dispersed Poisson Chain-Ladder Models," Risks, MDPI, vol. 6(2), pages 1-25, March.
    15. Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
    16. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    17. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Papers 1806.05939, arXiv.org.
    18. Carnevale Giulio Ercole & Clemente Gian Paolo, 2020. "A Bayesian Internal Model for Reserve Risk: An Extension of the Correlated Chain Ladder," Risks, MDPI, vol. 8(4), pages 1-20, November.
    19. Diers, Dorothea & Linde, Marc & Hahn, Lukas, 2016. "Addendum to ‘The multi-year non-life insurance risk in the additive reserving model’ [Insurance Math. Econom. 52(3) (2013) 590–598]: Quantification of multi-year non-life insurance risk in chain ladde," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 187-199.
    20. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.

    More about this item

    Keywords

    Non‐life insurance; Reserve risk; Claims Development Result; Bootstrap method; Tail factor; Prediction error; Solvency II;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00605329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.