IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i4p125-d447798.html
   My bibliography  Save this article

A Bayesian Internal Model for Reserve Risk: An Extension of the Correlated Chain Ladder

Author

Listed:
  • Carnevale Giulio Ercole

    (PartnerRe, Hardstrasse 301, 8005 Zürich, Switzerland)

  • Clemente Gian Paolo

    (Department of Mathematics for Economic, Financial and Actuarial Sciences, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 1, 20123 Milan, Italy)

Abstract

The goal of this paper was to exploit the Bayesian approach and MCMC procedures to structure an internal model to quantify the reserve risk of a non-life insurer under Solvency II regulation. To this aim, we provide an extension of the Correlated Chain Ladder (CCL) model to the one-year time horizon. In this way, we obtain the predictive distribution of the next year obligations and we are able to assess a capital requirement compliant with Solvency II framework. Numerical results compare the one-year CCL with other traditional approaches, such as Re-Reserving and the Merz and Wüthrich formula. One-year CCL proves to be a legitimate alternative, providing values comparable with the more traditional approaches and more robust and accurate risk estimations, that embed external knowledge not present in the data and allow for a more precise and tailored representation of the risk profile of the insurer.

Suggested Citation

  • Carnevale Giulio Ercole & Clemente Gian Paolo, 2020. "A Bayesian Internal Model for Reserve Risk: An Extension of the Correlated Chain Ladder," Risks, MDPI, vol. 8(4), pages 1-20, November.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:4:p:125-:d:447798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/4/125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/4/125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. England, Peter & Verrall, Richard, 1999. "Analytic and bootstrap estimates of prediction errors in claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 281-293, December.
    2. Michel Dacorogna & Alessandro Ferriero & David Krief, 2018. "One-Year Change Methodologies for Fixed-Sum Insurance Contracts," Risks, MDPI, vol. 6(3), pages 1-29, July.
    3. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    4. Ioannis Ntzoufras & Petros Dellaportas, 2002. "Bayesian Modelling of Outstanding Liabilities Incorporating Claim Count Uncertainty," North American Actuarial Journal, Taylor & Francis Journals, vol. 6(1), pages 113-125.
    5. Peters, Gareth W. & Targino, Rodrigo S. & Wüthrich, Mario V., 2017. "Full Bayesian analysis of claims reserving uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 41-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verrall, R.J. & England, P.D., 2005. "Incorporating expert opinion into a stochastic model for the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 355-370, October.
    2. Fröhlich, Andreas & Weng, Annegret, 2018. "Parameter uncertainty and reserve risk under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 130-141.
    3. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    4. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    5. Bohnert, Alexander & Gatzert, Nadine & Kolb, Andreas, 2016. "Assessing inflation risk in non-life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 86-96.
    6. Klaus Schmidt, 2012. "Loss prediction based on run-off triangles," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 265-310, June.
    7. Verrall, R. J., 2000. "An investigation into stochastic claims reserving models and the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 91-99, February.
    8. Wahl, Felix & Lindholm, Mathias & Verrall, Richard, 2019. "The collective reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 34-50.
    9. Alexandre Boumezoued & Yoboua Angoua & Laurent Devineau & Jean-Philippe Boisseau, 2011. "One-year reserve risk including a tail factor: closed formula and bootstrap approaches," Working Papers hal-00605329, HAL.
    10. Taylor, Greg, 2021. "A special Tweedie sub-family with application to loss reserving prediction error," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 262-288.
    11. Gao, Guangyuan & Meng, Shengwang & Shi, Yanlin, 2021. "Dispersion modelling of outstanding claims with double Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 572-586.
    12. Jonas Harnau, 2018. "Log-Normal or Over-Dispersed Poisson?," Risks, MDPI, vol. 6(3), pages 1-37, July.
    13. Karthik Sriram & Peng Shi, 2021. "Stochastic loss reserving: A new perspective from a Dirichlet model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 195-230, March.
    14. Jonas Harnau, 2018. "Misspecification Tests for Log-Normal and Over-Dispersed Poisson Chain-Ladder Models," Risks, MDPI, vol. 6(2), pages 1-25, March.
    15. de Alba, Enrique & Nieto-Barajas, Luis E., 2008. "Claims reserving: A correlated Bayesian model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 368-376, December.
    16. England, P.D. & Verrall, R.J. & Wüthrich, M.V., 2019. "On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 74-88.
    17. Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
    18. Jorge De Andrés Sánchez & Antonio Terceño Gómez, 2003. "Applications of Fuzzy Regression in Actuarial Analysis," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 665-699, December.
    19. Yining Feng & Shuanming Li, 2023. "Advancing the Use of Deep Learning in Loss Reserving: A Generalized DeepTriangle Approach," Risks, MDPI, vol. 12(1), pages 1-14, December.
    20. Nataliya Chukhrova & Arne Johannssen, 2017. "State Space Models and the K alman -Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing," Risks, MDPI, vol. 5(2), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:4:p:125-:d:447798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.