IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i2p25-d137814.html
   My bibliography  Save this article

Misspecification Tests for Log-Normal and Over-Dispersed Poisson Chain-Ladder Models

Author

Listed:
  • Jonas Harnau

    (Department of Economics, University of Oxford & Oriel College, Oxford OX1 4EW, UK)

Abstract

Despite the widespread use of chain-ladder models, so far no theory was available to test for model specification. The popular over-dispersed Poisson model assumes that the over-dispersion is common across the data. A further assumption is that accident year effects do not vary across development years and vice versa. The log-normal chain-ladder model makes similar assumptions. We show that these assumptions can easily be tested and that similar tests can be used in both models. The tests can be implemented in a spreadsheet. We illustrate the implementation in several empirical applications. While the results for the log-normal model are valid in finite samples, those for the over-dispersed Poisson model are derived for large cell mean asymptotics which hold the number of cells fixed. We show in a simulation study that the finite sample performance is close to the asymptotic performance.

Suggested Citation

  • Jonas Harnau, 2018. "Misspecification Tests for Log-Normal and Over-Dispersed Poisson Chain-Ladder Models," Risks, MDPI, vol. 6(2), pages 1-25, March.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:2:p:25-:d:137814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/2/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/2/25/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. England, Peter & Verrall, Richard, 1999. "Analytic and bootstrap estimates of prediction errors in claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 281-293, December.
    2. Di Kuang & Bent Nielsen & Jens Perch Nielsen, 2011. "Forecasting in an Extended Chain‐Ladder‐Type Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(2), pages 345-359, June.
    3. Verrall, Richard & Nielsen, Jens Perch & Jessen, Anders Hedegaard, 2010. "Prediction of RBNS and IBNR Claims using Claim Amounts and Claim Counts," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 871-887, November.
    4. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    5. D. Kuang & B. Nielsen & J. P. Nielsen, 2008. "Identification of the age-period-cohort model and the extended chain-ladder model," Biometrika, Biometrika Trust, vol. 95(4), pages 979-986.
    6. Joshua D. Angrist & Alan B. Krueger, 1993. "Split Sample Instrumental Variables," Working Papers 699, Princeton University, Department of Economics, Industrial Relations Section..
    7. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    8. England, Peter, 2002. "Addendum to "Analytic and bootstrap estimates of prediction errors in claims reserving"," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 461-466, December.
    9. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Economics Papers 2018-W02, Economics Group, Nuffield College, University of Oxford.
    10. María Dolores Martínez Miranda & Bent Nielsen & Jens Perch Nielsen, 2015. "Inference and forecasting in the age–period–cohort model with unknown exposure with an application to mesothelioma mortality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 29-55, January.
    11. Bent Nielsen & Andrew Whitby, 2015. "A Joint Chow Test for Structural Instability," Econometrics, MDPI, vol. 3(1), pages 1-31, March.
    12. J. Harnau & B. Nielsen, 2017. "Over-dispersed age-period-cohort models," Economics Papers 2017-W06, Economics Group, Nuffield College, University of Oxford.
    13. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-235, April.
    14. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    15. Verrall, R. J., 1991. "On the estimation of reserves from loglinear models," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 75-80, March.
    16. Jonas Harnau, 2018. "Log-Normal or Over-Dispersed Poisson?," Risks, MDPI, vol. 6(3), pages 1-37, July.
    17. Taylor, G. C. & Ashe, F. R., 1983. "Second moments of estimates of outstanding claims," Journal of Econometrics, Elsevier, vol. 23(1), pages 37-61, September.
    18. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Papers 1806.05939, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Szatkowski & Łukasz Delong, 2021. "One-Year and Ultimate Reserve Risk in Mack Chain Ladder Model," Risks, MDPI, vol. 9(9), pages 1-29, August.
    2. Mammen, Enno & Martínez-Miranda, María Dolores & Nielsen, Jens Perch & Vogt, Michael, 2021. "Calendar effect and in-sample forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 31-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Harnau, 2018. "Log-Normal or Over-Dispersed Poisson?," Risks, MDPI, vol. 6(3), pages 1-37, July.
    2. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Papers 1806.05939, arXiv.org.
    3. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Economics Papers 2018-W02, Economics Group, Nuffield College, University of Oxford.
    4. England, P.D. & Verrall, R.J. & Wüthrich, M.V., 2019. "On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 74-88.
    5. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    6. Verrall, R.J. & England, P.D., 2005. "Incorporating expert opinion into a stochastic model for the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 355-370, October.
    7. D Kuang & Bent Nielsen & J P Nielsen, 2013. "The Geometric Chain-Ladder," Economics Papers 2013-W11, Economics Group, Nuffield College, University of Oxford.
    8. Zoë Fannon & B. Nielsen, 2018. "Age-period cohort models," Economics Papers 2018-W04, Economics Group, Nuffield College, University of Oxford.
    9. Han, Zhongxian & Gau, Wu-Chyuan, 2008. "Estimation of loss reserves with lognormal development factors," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 389-395, February.
    10. Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
    11. Hudecová, Šárka & Pešta, Michal, 2013. "Modeling dependencies in claims reserving with GEE," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 786-794.
    12. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    13. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    14. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    15. Mammen, Enno & Martínez Miranda, María Dolores & Nielsen, Jens Perch, 2015. "In-sample forecasting applied to reserving and mesothelioma mortality," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 76-86.
    16. Taylor, Greg, 2021. "A special Tweedie sub-family with application to loss reserving prediction error," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 262-288.
    17. Paulo J. R. Pinheiro & João Manuel Andrade e Silva & Maria De Lourdes Centeno, 2003. "Bootstrap Methodology in Claim Reserving," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 701-714, December.
    18. de Alba, Enrique & Nieto-Barajas, Luis E., 2008. "Claims reserving: A correlated Bayesian model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 368-376, December.
    19. Mammen, Enno & Martínez-Miranda, María Dolores & Nielsen, Jens Perch & Vogt, Michael, 2021. "Calendar effect and in-sample forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 31-52.
    20. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:2:p:25-:d:137814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.