IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v67y2016icp187-199.html
   My bibliography  Save this article

Addendum to ‘The multi-year non-life insurance risk in the additive reserving model’ [Insurance Math. Econom. 52(3) (2013) 590–598]: Quantification of multi-year non-life insurance risk in chain ladder reserving models

Author

Listed:
  • Diers, Dorothea
  • Linde, Marc
  • Hahn, Lukas

Abstract

This is the first study to derive closed-form analytical expressions for multi-year non-life insurance risk in the chain ladder model. Extending on previous research on the additive reserving model, we define multi-year risk via prediction errors of multi-year claims development results including both observed and future accident years. A resampling argument and a first-order Taylor approximation address the quantification of estimation errors and multiplicative dependencies in the chain ladder framework, respectively. From our generalized multi-year approach, we deduce estimators for reserve and premium risks in multi-year view and their implicit correlation. We reproduce well-known results from literature for the special cases of one-year and ultimo view. Further, we comment on how to obtain estimators for generalized versions of the chain ladder method. A case study demonstrates the applicability of our analytical formulae.

Suggested Citation

  • Diers, Dorothea & Linde, Marc & Hahn, Lukas, 2016. "Addendum to ‘The multi-year non-life insurance risk in the additive reserving model’ [Insurance Math. Econom. 52(3) (2013) 590–598]: Quantification of multi-year non-life insurance risk in chain ladde," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 187-199.
  • Handle: RePEc:eee:insuma:v:67:y:2016:i:c:p:187-199
    DOI: 10.1016/j.insmatheco.2015.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715001626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buchwalder, Markus & Bühlmann, Hans & Merz, Michael & Wüthrich, Mario V., 2006. "The Mean Square Error of Prediction in the Chain Ladder Reserving Method (Mack and Murphy Revisited)," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 521-542, November.
    2. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    3. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    4. repec:eme:jrfpps:v:14:y:2013:i:2:p:353-377 is not listed on IDEAS
    5. Mack, Thomas, 1999. "The Standard Error of Chain Ladder Reserve Estimates: Recursive Calculation and Inclusion of a Tail Factor," ASTIN Bulletin, Cambridge University Press, vol. 29(2), pages 361-366, November.
    6. Ohlsson, Esbjörn & Lauzeningks, Jan, 2009. "The one-year non-life insurance risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 203-208, October.
    7. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    8. Diers, Dorothea & Linde, Marc, 2013. "The multi-year non-life insurance risk in the additive loss reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 590-598.
    9. Dorothea Diers & Martin Eling & Christian Kraus & Marc Linde, 2013. "Multi-year non-life insurance risk," Journal of Risk Finance, Emerald Group Publishing, vol. 14(4), pages 353-377, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hahn, Lukas, 2017. "Multi-year non-life insurance risk of dependent lines of business in the multivariate additive loss reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 71-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hahn, Lukas, 2017. "Multi-year non-life insurance risk of dependent lines of business in the multivariate additive loss reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 71-81.
    2. England, P.D. & Verrall, R.J. & Wüthrich, M.V., 2019. "On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 74-88.
    3. Wahl, Felix & Lindholm, Mathias & Verrall, Richard, 2019. "The collective reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 34-50.
    4. Alessandro Ricotta & Edoardo Luini, 2019. "Bayesian Estimation of Structure Variables in the Collective Risk Model for Reserve Risk," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 9(2), pages 1-2.
    5. COSTA, JUAN IGNACIO BACCINO & DE ARMAS, GONZALO & Álvarez-Vaz, Ramón Dr., 2022. "Estudio De Algunos Métodos De Reservas Técnicas En Condiciones De Incertidumbre Para Seguros De No Vida (Study Of Some Methods Of Technical Reserves Under Conditions Of Uncertainty For Non-Life Insura," OSF Preprints 3pjr9, Center for Open Science.
    6. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    7. Pešta, Michal & Okhrin, Ostap, 2014. "Conditional least squares and copulae in claims reserving for a single line of business," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 28-37.
    8. Portugal, Luís & Pantelous, Athanasios A. & Verrall, Richard, 2021. "Univariate and multivariate claims reserving with Generalized Link Ratios," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 57-67.
    9. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
    10. Lindholm, Mathias & Verrall, Richard, 2020. "Regression based reserving models and partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 109-124.
    11. Marcin Szatkowski, 2022. "Study of Actuarial Characteristics of One-Year and Ultimate Reserve Risk Distributions Based on Market Data," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 14(4), pages 225-262, December.
    12. Marcin Szatkowski & Łukasz Delong, 2021. "One-Year and Ultimate Reserve Risk in Mack Chain Ladder Model," Risks, MDPI, vol. 9(9), pages 1-29, August.
    13. Alessandro Ricotta & Gian Paolo Clemente, 2016. "An Extension of Collective Risk Model for Stochastic Claim Reserving," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 6(5), pages 1-3.
    14. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    15. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    16. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    17. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    18. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Papers 1806.05939, arXiv.org.
    19. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    20. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:67:y:2016:i:c:p:187-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.