IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v220y2021i2p399-415.html
   My bibliography  Save this article

Estimation of heterogeneous panels with systematic slope variations

Author

Listed:
  • Breitung, Jörg
  • Salish, Nazarii

Abstract

We analyse estimation procedures for the panel data models with heterogeneous slopes. Specifically we take into account a possible dependence between regressors and heterogeneous slope coefficients, which is referred to as systematic variation. It is shown that under relevant forms of systematic slope variations (i) the pooled OLS estimator is severely biased, (ii) Swamy’s GLS estimator is inconsistent if the number of time periods T is fixed, whereas (iii) the mean-group estimator always provides consistent estimators at the risk of high variances. Following Mundlak (1978) we propose an augmentated regression which results in a simple and robust version of the pooled estimator. The latter approach avoids the risk of large standard errors of the mean-group estimator, whenever T is small. We also propose two test statistics for systematic slope variation using the Lagrange multiplier and Hausman principles. We derive their asymptotic properties and provide a local power analysis of both test statistics. Monte Carlo experiments corroborate our theoretical findings and show that for all combinations of N and T the Mundlak-type GLS estimator outperform all other estimators.

Suggested Citation

  • Breitung, Jörg & Salish, Nazarii, 2021. "Estimation of heterogeneous panels with systematic slope variations," Journal of Econometrics, Elsevier, vol. 220(2), pages 399-415.
  • Handle: RePEc:eee:econom:v:220:y:2021:i:2:p:399-415
    DOI: 10.1016/j.jeconom.2020.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407620301263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoderlein, Stefan & Klemelä, Jussi & Mammen, Enno, 2010. "Analyzing The Random Coefficient Model Nonparametrically," Econometric Theory, Cambridge University Press, vol. 26(3), pages 804-837, June.
    2. Manuel Arellano & Stéphane Bonhomme, 2012. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 987-1020.
    3. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
    4. Steven M. Fazzari & R. Glenn Hubbard & Bruce C. Petersen, 1988. "Financing Constraints and Corporate Investment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 19(1), pages 141-206.
    5. Swamy, P A V B, 1970. "Efficient Inference in a Random Coefficient Regression Model," Econometrica, Econometric Society, vol. 38(2), pages 311-323, March.
    6. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    7. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    8. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    9. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
    10. Jörg Breitung & Christoph Roling & Nazarii Salish, 2016. "Lagrange multiplier type tests for slope homogeneity in panel data models," Econometrics Journal, Royal Economic Society, vol. 19(2), pages 166-202, June.
    11. Horváth, Lajos & Trapani, Lorenzo, 2016. "Statistical inference in a random coefficient panel model," Journal of Econometrics, Elsevier, vol. 193(1), pages 54-75.
    12. Jeffrey M. Wooldridge, 2005. "Fixed-Effects and Related Estimators for Correlated Random-Coefficient and Treatment-Effect Panel Data Models," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 385-390, May.
    13. Murtazashvili, Irina & Wooldridge, Jeffrey M., 2008. "Fixed effects instrumental variables estimation in correlated random coefficient panel data models," Journal of Econometrics, Elsevier, vol. 142(1), pages 539-552, January.
    14. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-596, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sodjahin, Ibirénoyé Honoré Romaric & Féménia, Fabienne & Koutchade, Obafémi Philippe & Carpentier, Alain, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data," Working Papers 320398, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    2. Hou, Fang & Khan, Muhammad Amir & Hayat, Malik Tahir, 2024. "Empirical linkages among financial development, digital infrastructure, energy transition and natural resources footprints in BRICS region," Resources Policy, Elsevier, vol. 90(C).
    3. Olatunji Abdul Shobande, 2021. "Decomposing the Persistent and Transitory Effect of Information and Communication Technology on Environmental Impacts Assessment in Africa: Evidence from Mundlak Specification," Sustainability, MDPI, vol. 13(9), pages 1-12, April.
    4. Winkelmann Rainer, 2024. "Neglected Heterogeneity, Simpson’s Paradox, and the Anatomy of Least Squares," Journal of Econometric Methods, De Gruyter, vol. 13(1), pages 131-144, January.
    5. Schuffels, Johannes & Kool, Clemens & Lieb, Lenard & van Veen, Tom, 2024. "Is the slope of the euro area Phillips curve steeper than it seems? Heterogeneity and identification," Journal of International Money and Finance, Elsevier, vol. 148(C).
    6. Vladislav Morozov, 2022. "Inference on Extreme Quantiles of Unobserved Individual Heterogeneity," Papers 2210.08524, arXiv.org, revised Jun 2023.
    7. Sodjahin, Romaric & Carpentier, Alain & Koutchade, Obafèmi Philippe & Femenia, Fabienne, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: Estimation based on farm cost accounting data," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322295, Agricultural and Applied Economics Association.
    8. Shobande, Olatunji A., 2023. "Rethinking social change: Does the permanent and transitory effects of electricity and solid fuel use predict health outcome in Africa?," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Hsiao & Qi Li & Zhongwen Liang & Wei Xie, 2019. "Panel Data Estimation for Correlated Random Coefficients Models," Econometrics, MDPI, vol. 7(1), pages 1-18, February.
    2. Manuel Arellano & Stéphane Bonhomme, 2012. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 987-1020.
    3. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    4. Louise Laage, 2020. "A Correlated Random Coefficient Panel Model with Time-Varying Endogeneity," Papers 2003.09367, arXiv.org, revised Nov 2022.
    5. Abonazel, Mohamed R., 2016. "Generalized Random Coefficient Estimators of Panel Data Models: Asymptotic and Small Sample Properties," MPRA Paper 72586, University Library of Munich, Germany.
    6. Guowei Cui & Kazuhiko Hayakawa & Shuichi Nagata & Takashi Yamagata, 2018. "A robust approach to heteroskedasticity, error serial correlation and slope heterogeneity for large linear panel data models with interactive effects," ISER Discussion Paper 1037r, Institute of Social and Economic Research, Osaka University, revised Jun 2019.
    7. Michael Bates & Seolah Kim, 2024. "Estimating the price elasticity of gasoline demand in correlated random coefficient models with endogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 679-696, June.
    8. Lu, Xun & Su, Liangjun, 2023. "Uniform inference in linear panel data models with two-dimensional heterogeneity," Journal of Econometrics, Elsevier, vol. 235(2), pages 694-719.
    9. Andrea Mercatanti & Taneli Mäkinen & Andrea Silvestrini, 2017. "Investment decisions by European firms and financing constraints," Temi di discussione (Economic working papers) 1148, Bank of Italy, Economic Research and International Relations Area.
    10. Yuya Sasaki & Takuya Ura, 2021. "Slow Movers in Panel Data," Papers 2110.12041, arXiv.org.
    11. Aleksey Oshchepkov & Anna Shirokanova, 2020. "Multilevel Modeling For Economists: Why, When And How," HSE Working papers WP BRP 233/EC/2020, National Research University Higher School of Economics.
    12. Laage, Louise, 2024. "A Correlated Random Coefficient panel model with time-varying endogeneity," Journal of Econometrics, Elsevier, vol. 242(2).
    13. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
    14. Hoderlein, Stefan & Holzmann, Hajo & Meister, Alexander, 2017. "The triangular model with random coefficients," Journal of Econometrics, Elsevier, vol. 201(1), pages 144-169.
    15. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    16. Boundi-Chraki, Fahd & Perrotini-Hernández, Ignacio, 2021. "Absolute cost advantage and sectoral competitiveness: Empirical evidence from NAFTA and the European Union," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 162-173.
    17. repec:gnv:wpaper:unige:76321 is not listed on IDEAS
    18. Escanciano, Juan Carlos, 2023. "Irregular identification of structural models with nonparametric unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 106-127.
    19. Alyssa Carlson & Riju Joshi, 2024. "Sample selection in linear panel data models with heterogeneous coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 237-255, March.
    20. Gao, Yichen & Li, Cong & Liang, Zhongwen, 2015. "Binary response correlated random coefficient panel data models," Journal of Econometrics, Elsevier, vol. 188(2), pages 421-434.
    21. Hwang, Young Kyu & Sánchez Díez, Ángeles, 2024. "Renewable energy transition and green growth nexus in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).

    More about this item

    Keywords

    Panel data; Random effects; Slope heterogeneity;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:220:y:2021:i:2:p:399-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.