IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v18y2018i8p1327-1343.html
   My bibliography  Save this article

Generalized Pareto processes and fund liquidity risk

Author

Listed:
  • Sascha Desmettre
  • Johan de Kock
  • Peter Ruckdeschel
  • Frank Thomas Seifried

Abstract

Motivated by the modelling of liquidity risk in fund management in a dynamic setting, we propose and investigate a class of time series models with generalized Pareto marginals: the autoregressive generalized Pareto process (ARGP), a modified ARGP and a thresholded ARGP. These models are able to capture key data features apparent in fund liquidity data and reflect the underlying phenomena via easily interpreted, low-dimensional model parameters. We establish stationarity and ergodicity, provide a link to the class of shot-noise processes, and determine the associated interarrival distributions for exceedances. Moreover, we provide estimators for all relevant model parameters and establish consistency and asymptotic normality for all estimators (except the threshold parameter, which is to be estimated in advance). Finally, we illustrate our approach using real-world fund redemption data, and we discuss the goodness-of-fit of the estimated models.

Suggested Citation

  • Sascha Desmettre & Johan de Kock & Peter Ruckdeschel & Frank Thomas Seifried, 2018. "Generalized Pareto processes and fund liquidity risk," Quantitative Finance, Taylor & Francis Journals, vol. 18(8), pages 1327-1343, August.
  • Handle: RePEc:taf:quantf:v:18:y:2018:i:8:p:1327-1343
    DOI: 10.1080/14697688.2017.1410214
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2017.1410214
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2017.1410214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2018. "Bivariate integer-autoregressive process with an application to mutual fund flows," Post-Print hal-04590149, HAL.
    2. Darolles, Serge & Fol, Gaëlle Le & Lu, Yang & Sun, Ran, 2019. "Bivariate integer-autoregressive process with an application to mutual fund flows," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 181-203.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:18:y:2018:i:8:p:1327-1343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.