IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04467886.html
   My bibliography  Save this paper

Adaptation of Residential Buildings to Coastal Floods: Strategies, Costs and Efficiency

Author

Listed:
  • Axel Creach

    (LGP - Laboratoire de géographie physique : Environnements Quaternaires et Actuels - UP1 - Université Paris 1 Panthéon-Sorbonne - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12 - CNRS - Centre National de la Recherche Scientifique)

  • Emilio Bastidas-Arteaga

    (TRUST - Contrôle de santé fiabilité et calcul des structures - GeM - Institut de Recherche en Génie Civil et Mécanique - UN UFR ST - Université de Nantes - UFR des Sciences et des Techniques - UN - Université de Nantes - ECN - École Centrale de Nantes - CNRS - Centre National de la Recherche Scientifique)

  • Sophie Pardo

    (LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - IEMN-IAE Nantes - Institut d'Économie et de Management de Nantes - Institut d'Administration des Entreprises - Nantes - UN - Université de Nantes)

  • Denis Mercier

    (LGP - Laboratoire de géographie physique : Environnements Quaternaires et Actuels - UP1 - Université Paris 1 Panthéon-Sorbonne - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12 - CNRS - Centre National de la Recherche Scientifique)

Abstract

As the first defence to the natural environment, residential buildings are responsible for protecting human lives and assets in society. Nevertheless, some residential buildings in coastal areas are located in places where the population is exposed to the risk of drowning. Rise in the sea level due to climate change could increase these risks. Therefore, this chapter presents and discusses a framework for estimating the cost-effectiveness of adaptation strategies for buildings subjected to coastal floods. The chapter first describes the Vulnérabilité Intrinsèque Extrême (VIE) or Extreme Inherent Vulnerability index, which is a useful tool to identify the buildings where people could be trapped and drowned during floods. Afterwards, four adaptation strategies are presented and discussed focusing on their costs and effects on the VIE index. Finally, two case studies illustrate how the framework could help the decision-makers to compare or combine the adaptation strategies in a cost-effective way.

Suggested Citation

  • Axel Creach & Emilio Bastidas-Arteaga & Sophie Pardo & Denis Mercier, 2019. "Adaptation of Residential Buildings to Coastal Floods: Strategies, Costs and Efficiency," Post-Print hal-04467886, HAL.
  • Handle: RePEc:hal:journl:hal-04467886
    DOI: 10.1016/b978-0-12-816782-3.00008-5
    Note: View the original document on HAL open archive server: https://hal.science/hal-04467886
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04467886/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/b978-0-12-816782-3.00008-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian Gollier, 2012. "Pricing the Planet's Future: The Economics of Discounting in an Uncertain World," Economics Books, Princeton University Press, edition 1, volume 1, number 9894.
    2. Axel Creach & Sophie Pardo & Patrice Guillotreau & Denis Mercier, 2015. "The use of a micro-scale index to identify potential death risk areas due to coastal flood surges: lessons from Storm Xynthia on the French Atlantic coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1679-1710, July.
    3. Sebastiaan N. Jonkman & Bob Maaskant & Ezra Boyd & Marc Lloyd Levitan, 2009. "Loss of Life Caused by the Flooding of New Orleans After Hurricane Katrina: Analysis of the Relationship Between Flood Characteristics and Mortality," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 676-698, May.
    4. Axel Creach & Elie Chevillot-miot & Denis Mercier & Laurent Pourinet, 2016. "Vulnerability to coastal flood hazard of residential buildings on Noirmoutier Island (France)," Journal of Maps, Taylor & Francis Journals, vol. 12(2), pages 371-381, March.
    5. Jochen Hinkel & Detlef Vuuren & Robert Nicholls & Richard Klein, 2013. "The effects of adaptation and mitigation on coastal flood impacts during the 21st century. An application of the DIVA and IMAGE models," Climatic Change, Springer, vol. 117(4), pages 783-794, April.
    6. F. Vinet & D. Lumbroso & S. Defossez & L. Boissier, 2012. "A comparative analysis of the loss of life during two recent floods in France: the sea surge caused by the storm Xynthia and the flash flood in Var," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1179-1201, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caridad Ballesteros & José A. Jiménez & Christophe Viavattene, 2018. "A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 265-292, January.
    2. Sabri Alkan & Uğur Karadurmuş, 2023. "Risk assessment of natural and other hazard factors on drowning incidents in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2459-2475, September.
    3. Freeman, Mark C. & Wagner, Gernot & Zeckhauser, Richard J., 2015. "Climate Sensitivity Uncertainty: When Is Good News Bad?," Working Paper Series rwp15-002, Harvard University, John F. Kennedy School of Government.
    4. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    5. Gollier, Christian, 2016. "Gamma discounters are short-termist," Journal of Public Economics, Elsevier, vol. 142(C), pages 83-90.
    6. Antony Millner & Geoffrey Heal, 2014. "Resolving Intertemporal Conflicts: Economics vs Politics," NBER Working Papers 20705, National Bureau of Economic Research, Inc.
    7. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    8. Freeman, Mark C. & Groom, Ben, 2016. "How certain are we about the certainty-equivalent long term social discount rate?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 152-168.
    9. Andreas T. Schmidt & Daan Juijn, 2024. "Economic inequality and the long-term future," Politics, Philosophy & Economics, , vol. 23(1), pages 67-99, February.
    10. Fleurbaey, Marc & Zuber, Stéphane, 2015. "Discounting, beyond utilitarianism," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-52.
    11. Stern, Nicholas, 2014. "Ethics, equity and the economics of climate change paper 2: economics and politics," LSE Research Online Documents on Economics 62704, London School of Economics and Political Science, LSE Library.
    12. Rick Van der Ploeg & Armon Rezai, 2018. "Climate Policy and Stranded Carbon Assets: A Financial Perspective," OxCarre Working Papers 206, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    13. Nick Hanley & Louis Dupuy & Eoin McLaughlin, 2015. "Genuine Savings And Sustainability," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 779-806, September.
    14. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    15. Emily Fucile-Sanchez & Meri Davlasheridze, 2020. "Adjustments of Socially Vulnerable Populations in Galveston County, Texas USA Following Hurricane Ike," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    16. Sigit Perdana & Rod Tyers, 2020. "Global Climate Change Mitigation: Strategic Incentives," The Energy Journal, , vol. 41(3), pages 183-206, May.
    17. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    18. Fleurbaey, Marc & Zuber, Stéphane, 2015. "Discounting, risk and inequality: A general approach," Journal of Public Economics, Elsevier, vol. 128(C), pages 34-49.
    19. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    20. Martin Weitzman, 2012. "The Ramsey Discounting Formula for a Hidden-State Stochastic Growth Process," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(3), pages 309-321, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04467886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.