IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04425500.html
   My bibliography  Save this paper

Taming impulsive high-frequency data using optimal sampling periods

Author

Listed:
  • George Tzagkarakis

    (IRGO - Institut de Recherche en Gestion des Organisations - UB - Université de Bordeaux - Institut d'Administration des Entreprises (IAE) - Bordeaux)

  • Frantz Maurer

    (Kedge BS - Kedge Business School, IRGO - Institut de Recherche en Gestion des Organisations - UB - Université de Bordeaux - Institut d'Administration des Entreprises (IAE) - Bordeaux)

  • J.P. Nolan

Abstract

Optimal sampling period selection for high-frequency data is at the core of financial instruments based on algorithmic trading. The unique features of such data, absent in data measured at lower frequencies, raise significant challenges to their statistical analysis and econometric modelling, especially in the case of heavy-tailed data exhibiting outliers and rare events much more frequently. To address this problem, this paper proposes a new methodology for optimal sampling period selection, which better adapts to heavy-tailed statistics of high-frequency financial data. In particular, the novel concept of the degree of impulsiveness (DoI) is introduced first based on alpha-stable distributions, as an alternative source of information for characterising a broad range of impulsive behaviours. Then, a DoI-based generalised volatility signature plot is defined, which is further employed for determining the optimal sampling period. The performance of our method is evaluated in the case of risk quantification for high-frequency indexes, demonstrating a significantly improved accuracy when compared against the well-established volatility-based approach. © 2023, The Author(s).

Suggested Citation

  • George Tzagkarakis & Frantz Maurer & J.P. Nolan, 2023. "Taming impulsive high-frequency data using optimal sampling periods," Post-Print hal-04425500, HAL.
  • Handle: RePEc:hal:journl:hal-04425500
    DOI: 10.1007/s10479-023-05701-y
    Note: View the original document on HAL open archive server: https://hal.science/hal-04425500
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04425500/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s10479-023-05701-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Date, Paresh & Islyaev, Suren, 2015. "A fast calibrating volatility model for option pricing," European Journal of Operational Research, Elsevier, vol. 243(2), pages 599-606.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    2. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2021. "Option pricing with conditional GARCH models," European Journal of Operational Research, Elsevier, vol. 289(1), pages 350-363.
    3. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2023. "Covariance dependent kernels, a Q-affine GARCH for multi-asset option pricing," International Review of Financial Analysis, Elsevier, vol. 87(C).
    4. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    5. Mrázek, Milan & Pospíšil, Jan & Sobotka, Tomáš, 2016. "On calibration of stochastic and fractional stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1036-1046.
    6. McGee, Richard J. & McGroarty, Frank, 2017. "The risk premium that never was: A fair value explanation of the volatility spread," European Journal of Operational Research, Elsevier, vol. 262(1), pages 370-380.
    7. Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
    8. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.
    9. Detemple, Jérôme & Laminou Abdou, Souleymane & Moraux, Franck, 2020. "American step options," European Journal of Operational Research, Elsevier, vol. 282(1), pages 363-385.
    10. Recchioni, Maria Cristina & Iori, Giulia & Tedeschi, Gabriele & Ouellette, Michelle S., 2021. "The complete Gaussian kernel in the multi-factor Heston model: Option pricing and implied volatility applications," European Journal of Operational Research, Elsevier, vol. 293(1), pages 336-360.
    11. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.

    More about this item

    Keywords

    High-frequency indexes; Alpha-stable models; Degree of impulsiveness; Optimal sampling period;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04425500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.