IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04095500.html
   My bibliography  Save this paper

Believing Or Not In Algorithms... ? Recruiters' Perceptions And Behavior Towards Algorithms During Resume Screening
[Croire Ou Ne Pas Croire Les Algorithmes… ? Perceptions Et Comportement Des Recruteurs Face Aux Algorithmes Lors De La Pre-Selection De Cv]

Author

Listed:
  • Alain Lacroux

    (UP1 EMS - Université Paris 1 Panthéon-Sorbonne - École de Management de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Christelle Martin Lacroux

    (CERAG - Centre d'études et de recherches appliquées à la gestion - UGA - Université Grenoble Alpes)

Abstract

Resume pre-screening assisted by decision support systems integrating artificial intelligence is currently undergoing a strong development in many organizations, raising technical, managerial, legal and ethical issues. This paper aims to better understand the reactions of recruiters when they are confronted with algorithm-based recommendations during the CV screening process. Two major attitudes have been identified in the literature on users' reactions to algorithm-based recommendations: algorithm aversion, which reflects a general distrust and preference for human recommendations; and automation bias, corresponding to an overconfidence in the decisions or recommendations made by algorithmic decision support systems (ADSS). Based on the results obtained in the field of automated decision support, we hypothesize in general that recruiters trust human experts more than algorithmic decision support systems because they distrust algorithms for subjective decisions such as hiring. An experimental study on resume selection was conducted on a sample of professionals (N=1,100) who were asked to review a job offer and then evaluate two fictitious resumes in a 2×2 factorial design with the manipulation of the type of recommendation (no recommendation/algorithmic recommendation/human expert recommendation) and the relevance of recommendations (relevant vs. irrelevant recommendation). Our results support the general hypothesis of preference for human recommendations: recruiters demonstrate a higher level of trust in human expert recommendations compared to algorithmic recommendations. However, we also found that recommendation relevance has an unexpected differential impact on decisions: in the case of an irrelevant algorithmic recommendation, recruiters favored the least relevant resume over the best resume. This discrepancy between attitudes and behaviors suggests a possible automation bias. Our results also show that some specific personality traits (extraversion, neuroticism, and self-confidence) are associated with differential use of algorithmic recommendations.

Suggested Citation

  • Alain Lacroux & Christelle Martin Lacroux, 2022. "Believing Or Not In Algorithms... ? Recruiters' Perceptions And Behavior Towards Algorithms During Resume Screening [Croire Ou Ne Pas Croire Les Algorithmes… ? Perceptions Et Comportement Des Recru," Post-Print hal-04095500, HAL.
  • Handle: RePEc:hal:journl:hal-04095500
    Note: View the original document on HAL open archive server: https://paris1.hal.science/hal-04095500
    as

    Download full text from publisher

    File URL: https://paris1.hal.science/hal-04095500/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berkeley J. Dietvorst & Joseph P. Simmons & Cade Massey, 2018. "Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them," Management Science, INFORMS, vol. 64(3), pages 1155-1170, March.
    2. Maranda McBride & Lemuria Carter & Celestine Ntuen, 2012. "The impact of personality on nurses' bias towards automated decision aid acceptance," International Journal of Information Systems and Change Management, Inderscience Enterprises Ltd, vol. 6(2), pages 132-146.
    3. Jessica Ochmann & Sandra Zilker & Sven Laumer, 2021. "The Evaluation of the Black Box Problem for AI-Based Recommendations: An Interview-Based Study," Lecture Notes in Information Systems and Organization, in: Frederik Ahlemann & Reinhard Schütte & Stefan Stieglitz (ed.), Innovation Through Information Systems, pages 232-246, Springer.
    4. Ursula Oberst & Marc De Quintana & Susana Del Cerro & Andrés Chamarro, 2020. "Recruiters prefer expert recommendations over digital hiring algorithm: a choice-based conjoint study in a pre-employment screening scenario," Management Research Review, Emerald Group Publishing Limited, vol. 44(4), pages 625-641, November.
    5. Ursula Oberst & Marc De Quintana & Susana Del Cerro & Andrés Chamarro, 2020. "Recruiters prefer expert recommendations over digital hiring algorithm: a choice-based conjoint study in a pre-employment screening scenario," Management Research Review, Emerald Group Publishing Limited, vol. 44(4), pages 625-641, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alain Lacroux & Christelle Martin Lacroux, 2023. "Recruiters' Behaviors Faced with Dual (AI and human) Recommendations in Personnel Selection," Post-Print hal-04200429, HAL.
    2. Mahmud, Hasan & Islam, A.K.M. Najmul & Ahmed, Syed Ishtiaque & Smolander, Kari, 2022. "What influences algorithmic decision-making? A systematic literature review on algorithm aversion," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.
    4. Bryce McLaughlin & Jann Spiess, 2022. "Algorithmic Assistance with Recommendation-Dependent Preferences," Papers 2208.07626, arXiv.org, revised Jan 2024.
    5. Markus Jung & Mischa Seiter, 2021. "Towards a better understanding on mitigating algorithm aversion in forecasting: an experimental study," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 32(4), pages 495-516, December.
    6. Tse, Tiffany Tsz Kwan & Hanaki, Nobuyuki & Mao, Bolin, 2024. "Beware the performance of an algorithm before relying on it: Evidence from a stock price forecasting experiment," Journal of Economic Psychology, Elsevier, vol. 102(C).
    7. Kohei Kawaguchi, 2021. "When Will Workers Follow an Algorithm? A Field Experiment with a Retail Business," Management Science, INFORMS, vol. 67(3), pages 1670-1695, March.
    8. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
    9. Ekaterina Jussupow & Kai Spohrer & Armin Heinzl & Joshua Gawlitza, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Information Systems Research, INFORMS, vol. 32(3), pages 713-735, September.
    10. Martin Spann & Bernd Skiera, 2020. "Dynamische Preisgestaltung in der digitalisierten Welt [Dynamic Pricing in a Digitized World]," Schmalenbach Journal of Business Research, Springer, vol. 72(3), pages 321-342, September.
    11. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    12. Bauer, Kevin & Nofer, Michael & Abdel-Karim, Benjamin M. & Hinz, Oliver, 2022. "The effects of discontinuing machine learning decision support," SAFE Working Paper Series 370, Leibniz Institute for Financial Research SAFE.
    13. repec:cup:judgdm:v:15:y:2020:i:3:p:449-451 is not listed on IDEAS
    14. Kevin Bauer & Andrej Gill, 2024. "Mirror, Mirror on the Wall: Algorithmic Assessments, Transparency, and Self-Fulfilling Prophecies," Information Systems Research, INFORMS, vol. 35(1), pages 226-248, March.
    15. Gregory Weitzner, 2024. "Reputational Algorithm Aversion," Papers 2402.15418, arXiv.org, revised Jul 2024.
    16. Sroginis, Anna & Fildes, Robert & Kourentzes, Nikolaos, 2023. "Use of contextual and model-based information in adjusting promotional forecasts," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1177-1191.
    17. Mari, Alex & Mandelli, Andreina & Algesheimer, René, 2024. "Empathic voice assistants: Enhancing consumer responses in voice commerce," Journal of Business Research, Elsevier, vol. 175(C).
    18. Alex Mari & Andreina Mandelli & René Algesheimer, 2023. "Shopping with Voice Assistants: How Empathy Affects Individual and Family Decision-Making Outcomes," Working Papers 399, University of Zurich, Department of Business Administration (IBW).
    19. Mahmud, Hasan & Islam, A.K.M. Najmul & Mitra, Ranjan Kumar, 2023. "What drives managers towards algorithm aversion and how to overcome it? Mitigating the impact of innovation resistance through technology readiness," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    20. Béatrice BOULU-RESHEF & Alexis DIRER & Nicole VON WILCZUR, 2022. "Algorithmic vs. Human Portfolio Choice," LEO Working Papers / DR LEO 2966, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    21. Talia Gillis & Bryce McLaughlin & Jann Spiess, 2021. "On the Fairness of Machine-Assisted Human Decisions," Papers 2110.15310, arXiv.org, revised Sep 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04095500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.