IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02956380.html
   My bibliography  Save this paper

On the predictability of crude oil market: A hybrid multiscale wavelet approach

Author

Listed:
  • Stelios Bekiros

    (EUI - European University Institute)

  • Jose Arreola Hernandez

    (ESC [Rennes] - ESC Rennes School of Business)

  • Gazi Salah Uddin

    (LIU - Linköping University)

  • Ahmed Taneem Muzaffar

    (International Labour Organization)

Abstract

Past research indicates that forecasting is important in understanding price dynamics across assets. We explore the potentiality of multiscale forecasting in the crude oil market by employing a wavelet multiscale analysis on returns and volatilities of Brent and West Texas Intermediate crude oil indices between January 1, 2001, and May 1, 2015. The analysis is based on a shift-invariant discrete wavelet transform, augmented by an entropy-based methodology for determining the optimal timescale decomposition under different market regimes. The empirical results show that the five-step-ahead wavelet forecast that is based on volatilities outperforms the random walk forecast, relative to the wavelet forecast that is based on returns. Optimal wavelet causality forecasting for returns is suggested across all frequencies (i.e., daily–yearly), whereas for volatilities it is suggested only up to quarterly frequencies. These results may have important implications for market efficiency and predictability of prices on the crude oil markets.

Suggested Citation

  • Stelios Bekiros & Jose Arreola Hernandez & Gazi Salah Uddin & Ahmed Taneem Muzaffar, 2020. "On the predictability of crude oil market: A hybrid multiscale wavelet approach," Post-Print hal-02956380, HAL.
  • Handle: RePEc:hal:journl:hal-02956380
    DOI: 10.1002/for.2635
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bekiros, Stelios & Marcellino, Massimiliano, 2013. "The multiscale causal dynamics of foreign exchange markets," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 282-305.
    2. Ramsey James B. & Lampart Camille, 1998. "The Decomposition of Economic Relationships by Time Scale Using Wavelets: Expenditure and Income," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(1), pages 1-22, April.
    3. Michis Antonis & Sapatinas Theofanis, 2007. "Wavelet Instruments for Efficiency Gains in Generalized Method of Moment Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(4), pages 1-25, December.
    4. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    5. Anupam Dutta, 2017. "Modeling and forecasting oil price risk: the role of implied volatility index," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 44(6), pages 1003-1016, November.
    6. Yogo, Motohiro, 2008. "Measuring business cycles: A wavelet analysis of economic time series," Economics Letters, Elsevier, vol. 100(2), pages 208-212, August.
    7. Haugom, Erik & Langeland, Henrik & Molnár, Peter & Westgaard, Sjur, 2014. "Forecasting volatility of the U.S. oil market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 1-14.
    8. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    9. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    10. Michis, Antonis A., 2014. "Time scale evaluation of economic forecasts," Economics Letters, Elsevier, vol. 123(3), pages 279-281.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    13. Uddin, Gazi Salah & Bekiros, Stelios & Ahmed, Ali, 2018. "The nexus between geopolitical uncertainty and crude oil markets: An entropy-based wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 30-39.
    14. Gazi Salah Uddin & Ahmed Taneem Muzaffar & Mohamed Arouri & Bo Sjö, 2017. "Understanding the Relationship between Inflation and Growth: A Wavelet Transformation Approach in the Case of Bangladesh," The World Economy, Wiley Blackwell, vol. 40(9), pages 1918-1933, September.
    15. Yan‐ran Ma & Qiang Ji & Jiaofeng Pan, 2019. "Oil financialization and volatility forecast: Evidence from multidimensional predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 564-581, September.
    16. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    17. Fan, Yanqin & Gençay, Ramazan, 2010. "Unit Root Tests With Wavelets," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1305-1331, October.
    18. Gençay, Ramazan & Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon J., 2001. "An Introduction to Wavelets and Other Filtering Methods in Finance and Economics," Elsevier Monographs, Elsevier, edition 1, number 9780122796708.
    19. Marco Gallegati & Mauro Gallegati & James Bernard Ramsey & Willi Semmler, 2011. "The US Wage Phillips Curve across Frequencies and over Time," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(4), pages 489-508, August.
    20. Yousefi, Ayoub & Wirjanto, Tony S., 2004. "The empirical role of the exchange rate on the crude-oil price formation," Energy Economics, Elsevier, vol. 26(5), pages 783-799, September.
    21. Yue‐Jun Zhang & Jin‐Liang Zhang, 2018. "Volatility forecasting of crude oil market: A new hybrid method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 781-789, December.
    22. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    23. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    24. Yang, C. W. & Hwang, M. J. & Huang, B. N., 2002. "An analysis of factors affecting price volatility of the US oil market," Energy Economics, Elsevier, vol. 24(2), pages 107-119, March.
    25. Boubaker, Heni & Sghaier, Nadia, 2015. "Semiparametric generalized long-memory modeling of some mena stock market returns: A wavelet approach," Economic Modelling, Elsevier, vol. 50(C), pages 254-265.
    26. Laura Ryan & Bronwen Whiting, 2017. "Multi‐model Forecasts of the West Texas Intermediate Crude Oil Spot Price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(4), pages 395-406, July.
    27. Alban Kitous & Bert Saveyn & Kimon Keramidas & Toon Vandyck & Luis Rey Los Santos & Krzysztof Wojtowicz, 2016. "Impact of low oil prices on oil exporting countries," JRC Research Reports JRC101562, Joint Research Centre.
    28. Li, Meiyu & Gençay, Ramazan, 2017. "Tests for serial correlation of unknown form in dynamic least squares regression with wavelets," Economics Letters, Elsevier, vol. 155(C), pages 104-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Shaobo & Guo, Jiaqi, 2022. "Infectious disease equity market volatility, geopolitical risk, speculation, and commodity returns: Comparative analysis of five epidemic outbreaks," Research in International Business and Finance, Elsevier, vol. 62(C).
    2. Mustanen, Dmitri & Maaitah, Ahmad & Mishra, Tapas & Parhi, Mamata, 2022. "The power of investors’ optimism and pessimism in oil market forecasting," Energy Economics, Elsevier, vol. 114(C).
    3. Zhang, Junting & Liu, Haifei & Bai, Wei & Li, Xiaojing, 2024. "A hybrid approach of wavelet transform, ARIMA and LSTM model for the share price index futures forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    4. Li, Chuchu & Lin, Qin & Huang, Dong & Grifoll, Manel & Yang, Dong & Feng, Hongxiang, 2023. "Is entropy an indicator of port traffic predictability? The evidence from Chinese ports," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    5. Christos Floros & Georgios Galyfianakis, 2020. "Bubbles in Crude Oil and Commodity Energy Index: New Evidence," Energies, MDPI, vol. 13(24), pages 1-11, December.
    6. Jiaying Peng & Zhenghui Li & Benjamin M. Drakeford, 2020. "Dynamic Characteristics of Crude Oil Price Fluctuation—From the Perspective of Crude Oil Price Influence Mechanism," Energies, MDPI, vol. 13(17), pages 1-19, August.
    7. Lu, Botao & Ma, Feng & Wang, Jiqian & Ding, Hui & Wahab, M.I.M., 2021. "Harnessing the decomposed realized measures for volatility forecasting: Evidence from the US stock market," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 672-689.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michis, Antonis A., 2014. "Time scale evaluation of economic forecasts," Economics Letters, Elsevier, vol. 123(3), pages 279-281.
    2. Sun, Xiaolei & Chen, Xiuwen & Wang, Jun & Li, Jianping, 2020. "Multi-scale interactions between economic policy uncertainty and oil prices in time-frequency domains," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    3. Moustfa Ismael Khaleel & Ahmed Younis Jabbar & Maha Kalai & Rima Aloulou & Kamel Helali, 2024. "An Applied Study of the Symmetric and Asymmetric Impact of Oil Prices and International Financial Markets on Economic Growth in Iraq," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 66-80, July.
    4. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    5. Kilponen, Juha & Verona, Fabio, 2016. "Testing the Q theory of investment in the frequency domain," Research Discussion Papers 32/2016, Bank of Finland.
    6. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    7. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    8. Su, Chi-Wei & Qin, Meng & Tao, Ran & Moldovan, Nicoleta-Claudia & Lobonţ, Oana-Ramona, 2020. "Factors driving oil price —— from the perspective of United States," Energy, Elsevier, vol. 197(C).
    9. Kenneth R. Szulczyk & Changyong Zhang, 2020. "Switching-regime regression for modeling and predicting a stock market return," Empirical Economics, Springer, vol. 59(5), pages 2385-2403, November.
    10. Caraiani, Petre, 2015. "Estimating DSGE models across time and frequency," Journal of Macroeconomics, Elsevier, vol. 44(C), pages 33-49.
    11. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Gold, oil, and stocks: Dynamic correlations," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 186-201.
    12. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, September.
    13. Lin, Boqiang & Su, Tong, 2021. "Do China's macro-financial factors determine the Shanghai crude oil futures market?," International Review of Financial Analysis, Elsevier, vol. 78(C).
    14. Bekiros, Stelios & Boubaker, Sabri & Nguyen, Duc Khuong & Uddin, Gazi Salah, 2017. "Black swan events and safe havens: The role of gold in globally integrated emerging markets," Journal of International Money and Finance, Elsevier, vol. 73(PB), pages 317-334.
    15. Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
    16. Nourah Al†Yousef, 2018. "Fundamentals and Oil Price Behaviour: New Evidence from Co†integration Tests with Structural Breaks and Granger Causality Tests," Australian Economic Papers, Wiley Blackwell, vol. 57(1), pages 1-18, March.
    17. Balcilar, Mehmet & Gupta, Rangan & Wohar, Mark E., 2017. "Common cycles and common trends in the stock and oil markets: Evidence from more than 150years of data," Energy Economics, Elsevier, vol. 61(C), pages 72-86.
    18. Priya, Pragati & Pal, Debdatta, 2024. "Does crude oil price volatility respond asymmetrically to financial shocks?," Resources Policy, Elsevier, vol. 92(C).
    19. Lu, Quanying & Li, Yuze & Chai, Jian & Wang, Shouyang, 2020. "Crude oil price analysis and forecasting: A perspective of “new triangle”," Energy Economics, Elsevier, vol. 87(C).
    20. Kilponen, Juha & Verona, Fabio, 2016. "Testing the Q theory of investment in the frequency domain," Bank of Finland Research Discussion Papers 32/2016, Bank of Finland.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02956380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.