IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02097471.html
   My bibliography  Save this paper

The impact of automation on employment: just the usual structural change?

Author

Listed:
  • Ben Vermeulen

    (University of Hohenheim)

  • Jan Kesselhut

    (University of Hohenheim)

  • Andreas Pyka

    (University of Hohenheim)

  • Pier-Paolo Saviotti

    (Faculty of Geosciences, Utrecht University - Faculty of Geosciences)

Abstract

We study the projected impact of automation on employment in the forthcoming decade, both at the macro-level and in actual (types of) sectors. Hereto, we unite an evolutionary economic model of multisectoral structural change with labor economic theory. We thus get a comprehensive framework of how displacement of labor in sectors of application is compensated by intra- and intersectoral countervailing effects and notably mopped up by newly created, labor-intensive sectors. We use several reputable datasets with expert projections on employment in occupations affected by automation (and notably by the introduction of robotics and AI) to pinpoint which and how sectors and occupations face employment shifts. This reveals how potential job loss due to automation in "applying" sectors is counterbalanced by job creation in "making" sectors as well in complementary and quaternary, spillover sectors. Finally, we study several macro-level scenarios on employment and find that mankind is facing "the usual structural change" rather than the "end of work". We provide recommendations on policy instruments that enhance the dynamic efficiency of structural change.

Suggested Citation

  • Ben Vermeulen & Jan Kesselhut & Andreas Pyka & Pier-Paolo Saviotti, 2018. "The impact of automation on employment: just the usual structural change?," Post-Print hal-02097471, HAL.
  • Handle: RePEc:hal:journl:hal-02097471
    DOI: 10.3390/su10051661
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    2. Marco Vivarelli, 2014. "Innovation, Employment and Skills in Advanced and Developing Countries: A Survey of Economic Literature," Journal of Economic Issues, Taylor & Francis Journals, vol. 48(1), pages 123-154.
    3. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    4. David Autor & Anna Salomons, 2018. "Is Automation Labor-Displacing? Productivity Growth, Employment, and the Labor Share," NBER Working Papers 24871, National Bureau of Economic Research, Inc.
    5. Maarten Goos & Alan Manning & Anna Salomons, 2009. "Job Polarization in Europe," American Economic Review, American Economic Association, vol. 99(2), pages 58-63, May.
    6. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    7. Melanie Arntz & Terry Gregory & Ulrich Zierahn, 2016. "The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis," OECD Social, Employment and Migration Working Papers 189, OECD Publishing.
    8. Südekum, Jens & Dauth, Wolfgang & Findeisen, Sebastian & Woessner, Nicole, 2017. "German Robots – The Impact of Industrial Robots on Workers," CEPR Discussion Papers 12306, C.E.P.R. Discussion Papers.
    9. Ugo Colombino, 2019. "Is unconditional basic income a viable alternative to other social welfare measures?," IZA World of Labor, Institute of Labor Economics (IZA), pages 128-128, March.
    10. Daron Acemoglu & Pascual Restrepo, 2017. "Robots and Jobs: Evidence from US Labor Markets," Boston University - Department of Economics - Working Papers Series dp-297, Boston University - Department of Economics.
    11. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    12. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation, and Work," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 197-236, National Bureau of Economic Research, Inc.
    13. Maarten Goos & Alan Manning, 2007. "Lousy and Lovely Jobs: The Rising Polarization of Work in Britain," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 118-133, February.
    14. L. Rachel Ngai & Christopher A. Pissarides, 2007. "Structural Change in a Multisector Model of Growth," American Economic Review, American Economic Association, vol. 97(1), pages 429-443, March.
    15. Terry Gregory & A.M. Salomons & Ulrich Zierahn, 2016. "Racing With or Against the Machine? Evidence from Europe," Working Papers 16-05, Utrecht School of Economics.
    16. Enrico Moretti & Per Thulin, 2013. "Local multipliers and human capital in the United States and Sweden," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 22(1), pages 339-362, February.
    17. David H. Autor & Lawrence F. Katz & Melissa S. Kearney, 2006. "The Polarization of the U.S. Labor Market," American Economic Review, American Economic Association, vol. 96(2), pages 189-194, May.
    18. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    19. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    20. Echevarria, Cristina, 1997. "Changes in Sectoral Composition Associated with Economic Growth," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(2), pages 431-452, May.
    21. Gasteiger, Emanuel & Prettner, Klaus, 2017. "A note on automation, stagnation, and the implications of a robot tax," Discussion Papers 2017/17, Free University Berlin, School of Business & Economics.
    22. Bharat Trehan, 2003. "Productivity shocks and the unemployment rate," Economic Review, Federal Reserve Bank of San Francisco, pages 13-27.
    23. Lawrence F. Katz & Robert A. Margo, 2014. "Technical Change and the Relative Demand for Skilled Labor: The United States in Historical Perspective," NBER Chapters, in: Human Capital in History: The American Record, pages 15-57, National Bureau of Economic Research, Inc.
    24. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation and Work," Boston University - Department of Economics - Working Papers Series dp-298, Boston University - Department of Economics.
    25. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2017. "Revisiting the risk of automation," Economics Letters, Elsevier, vol. 159(C), pages 157-160.
    26. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    27. David J. Deming, 2017. "The Growing Importance of Social Skills in the Labor Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1593-1640.
    28. Pier Paolo Saviotti & Andreas Pyka, 2009. "Product variety, competition and economic growth," Springer Books, in: Uwe Cantner & Jean-Luc Gaffard & Lionel Nesta (ed.), Schumpeterian Perspectives on Innovation, Competition and Growth, pages 71-95, Springer.
    29. Saviotti, Pier Paolo & Pyka, Andreas, 2004. "Economic development, qualitative change and employment creation," Structural Change and Economic Dynamics, Elsevier, vol. 15(3), pages 265-287, September.
    30. Claudia Goldin & Lawrence F. Katz, 2007. "The Race between Education and Technology: The Evolution of U.S. Educational Wage Differentials, 1890 to 2005," NBER Working Papers 12984, National Bureau of Economic Research, Inc.
    31. Claudia Goldin & Lawrence F. Katz, 1998. "The Origins of Technology-Skill Complementarity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(3), pages 693-732.
    32. repec:iza:izawol:journl:y:2015:p:128 is not listed on IDEAS
    33. Bonin, Holger & Gregory, Terry & Zierahn, Ulrich, 2015. "Übertragung der Studie von Frey/Osborne (2013) auf Deutschland," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, volume 57, number 123310.
    34. Daron Acemoglu & Pascual Restrepo, 2016. "The Race Between Machine and Man: Implications of Technology for Growth, Factor Shares and Employment," NBER Working Papers 22252, National Bureau of Economic Research, Inc.
    35. repec:bin:bpeajo:v:49:y:2019:i:2018-01:p:1-87 is not listed on IDEAS
    36. Simon Forge & Colin Blackman, 2010. "A Helping Hand for Europe: The Competitive Outlook for the EU Robotics Industry," JRC Research Reports JRC61539, Joint Research Centre.
    37. Dauth, Wolfgang & Findeisen, Sebastian & Südekum, Jens & Wößner, Nicole, 2017. "German robots - the impact of industrial robots on workers," IAB-Discussion Paper 201730, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    38. Joel Mokyr & Chris Vickers & Nicolas L. Ziebarth, 2015. "The History of Technological Anxiety and the Future of Economic Growth: Is This Time Different?," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 31-50, Summer.
    39. David Autor, 2014. "Polanyi's Paradox and the Shape of Employment Growth," NBER Working Papers 20485, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    2. Cirillo, Valeria & Evangelista, Rinaldo & Guarascio, Dario & Sostero, Matteo, 2021. "Digitalization, routineness and employment: An exploration on Italian task-based data," Research Policy, Elsevier, vol. 50(7).
    3. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    4. Maarten Goos & Melanie Arntz & Ulrich Zierahn & Terry Gregory & Stephanie Carretero Gomez & Ignacio Gonzalez Vazquez & Koen Jonkers, 2019. "The Impact of Technological Innovation on the Future of Work," JRC Working Papers on Labour, Education and Technology 2019-03, Joint Research Centre.
    5. Geiger, Niels & Prettner, Klaus & Schwarzer, Johannes A., 2018. "Automatisierung, Wachstum und Ungleichheit," Hohenheim Discussion Papers in Business, Economics and Social Sciences 13-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    6. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).
    7. Pouliakas, Konstantinos, 2018. "Determinants of Automation Risk in the EU Labour Market: A Skills-Needs Approach," IZA Discussion Papers 11829, Institute of Labor Economics (IZA).
    8. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    9. Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    10. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2019. "Digitalization and the Future of Work: Macroeconomic Consequences," IZA Discussion Papers 12428, Institute of Labor Economics (IZA).
    11. Fossen, Frank M. & Sorgner, Alina, 2019. "New Digital Technologies and Heterogeneous Employment and Wage Dynamics in the United States: Evidence from Individual-Level Data," IZA Discussion Papers 12242, Institute of Labor Economics (IZA).
    12. Mutascu, Mihai, 2021. "Artificial intelligence and unemployment: New insights," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 653-667.
    13. Nicola Cassandro & Marco Centra & Dario Guarascio & Piero Esposito, 2021. "What drives employment–unemployment transitions? Evidence from Italian task-based data," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(3), pages 1109-1147, October.
    14. Zilian, Laura S. & Zilian, Stella S. & Jäger, Georg, 2021. "Labour market polarisation revisited: evidence from Austrian vacancy data," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 55, pages 1-7.
    15. Dario Cords & Klaus Prettner, 2022. "Technological unemployment revisited: automation in a search and matching framework [The future of work: meeting the global challenges of demographic change and automation]," Oxford Economic Papers, Oxford University Press, vol. 74(1), pages 115-135.
    16. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    17. Matthias Firgo & Peter Mayerhofer & Michael Peneder & Philipp Piribauer & Peter Reschenhofer, 2018. "Beschäftigungseffekte der Digitalisierung in den Bundesländern sowie in Stadt und Land," WIFO Studies, WIFO, number 61633.
    18. Martin Labaj & Materj Vitalos, 2019. "Automation and labor demand in European countries: A task-based approach to wage bill decomposition," Department of Economic Policy Working Paper Series 021, Department of Economic Policy, Faculty of National Economy, University of Economics in Bratislava.
    19. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.
    20. Zhang, Xinchun & Sun, Murong & Liu, Jianxu & Xu, Aijia, 2024. "The nexus between industrial robot and employment in China: The effects of technology substitution and technology creation," Technological Forecasting and Social Change, Elsevier, vol. 202(C).

    More about this item

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02097471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.