IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01682272.html
   My bibliography  Save this paper

Hybrid Bottom-up/Top-down Energy and Economy Outlooks: A Review of IMACLIM-S Experiments

Author

Listed:
  • Frédéric Ghersi

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this paper we survey the research undertaken at the Centre International de Recherche sur l'Environnement et le Développement (CIRED) on the combination of the IMACLIM-S macroeconomic model with "bottom-up" energy modeling, with a view to associate the strengths and circumvent the limitations of both approaches to energy-economy-environment (E3) prospective modeling. We start by presenting the two methodological avenues of coupling IMACLIM-S with detailed energy systems models pursued at CIRED since the late 1990s': (1) the calibration of the behavioral functions of IMACLIM-S that represent the producers' and consumers' trade-offs between inputs or consumptions, on a large set of bottom-up modeling results; (2) the coupling of IMACLIM-S to some bottom-up model through the iterative exchange of some of each model's outputs as the other model's inputs until convergence of the exchanged data, comprising the main macroeconomic drivers and energy systems variables. In the following section, we turn to numerical application and address the prerequisite of harmonizing national accounts, energy balance, and energy price data to produce consistent hybrid input-output matrices as a basis of scenario exploration. We highlight how this data treatment step reveals the discrepancies and biases induced by sticking to the conventional modeling usage of uniform pricing of homogeneous goods. IMACLIM-S rather calibrates agent-specific margins, which we introduce and comment upon. In a further section we sum up the results of 4 IMACLIM-S experiments, insisting upon the value-added of hybrid modeling. These varied experiments regard international climate policy burden sharing; the more general numerical consequences of shifting from a biased standard CGE model perspective to the hybrid IMACLIM approach; the macroeconomic consequences of a strong development of electric mobility in the European Union; and the resilience of public debts to energy shocks. In a last section we offer some conclusions and thoughts on a continued research agenda.

Suggested Citation

  • Frédéric Ghersi, 2015. "Hybrid Bottom-up/Top-down Energy and Economy Outlooks: A Review of IMACLIM-S Experiments," Post-Print hal-01682272, HAL.
  • Handle: RePEc:hal:journl:hal-01682272
    DOI: 10.3389/fenvs.2015.00074
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jisong Zhu & Zhaoxia Jing & Tianyao Ji & Nauman Ali Larik, 2020. "Energy–Economy Coupled Simulation Approach and Simulator Based on Invididual-Based Model," Energies, MDPI, vol. 13(11), pages 1-18, June.
    2. Soummane, Salaheddine & Ghersi, Frédéric & Lefèvre, Julien, 2019. "Macroeconomic pathways of the Saudi economy: The challenge of global mitigation action versus the opportunity of national energy reforms," Energy Policy, Elsevier, vol. 130(C), pages 263-282.
    3. Salaheddine Soummane & F. Ghersi, 2020. "The IMACLIM-SAU model Version 1.0," Working Papers hal-03099334, HAL.
    4. Rafael Ninno Muniz & Stéfano Frizzo Stefenon & William Gouvêa Buratto & Ademir Nied & Luiz Henrique Meyer & Erlon Cristian Finardi & Ricardo Marino Kühl & José Alberto Silva de Sá & Brigida Ramati Per, 2020. "Tools for Measuring Energy Sustainability: A Comparative Review," Energies, MDPI, vol. 13(9), pages 1-27, May.
    5. Ramiz Qussous & Nick Harder & Anke Weidlich, 2022. "Understanding Power Market Dynamics by Reflecting Market Interrelations and Flexibility-Oriented Bidding Strategies," Energies, MDPI, vol. 15(2), pages 1-24, January.
    6. Gupta, Dipti & Ghersi, Frédéric & Vishwanathan, Saritha S. & Garg, Amit, 2019. "Achieving sustainable development in India along low carbon pathways: Macroeconomic assessment," World Development, Elsevier, vol. 123(C), pages 1-1.
    7. Ravigné, Emilien & Ghersi, Frédéric & Nadaud, Franck, 2022. "Is a fair energy transition possible? Evidence from the French low-carbon strategy," Ecological Economics, Elsevier, vol. 196(C).
    8. Salaheddine Soummane & F. Ghersi, 2020. "The IMACLIM-SAU model Version 1.0," CIRED Working Papers hal-03099334, HAL.
    9. William Wills & Emilio Lebre La Rovere & Carolina Grottera & Giovanna Ferrazzo Naspolini & Gaëlle Le Treut & F. Ghersi & Julien Lefèvre & Carolina Burle Schmidt Dubeux, 2022. "Economic and social effectiveness of carbon pricing schemes to meet Brazilian NDC targets," Post-Print hal-03500923, HAL.
    10. Xin Su & Frédéric Ghersi & Fei Teng & Gaëlle Treut & Meicong Liang, 2022. "The economic impact of a deep decarbonisation pathway for China: a hybrid model analysis through bottom-up and top-down linking," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-37, January.
    11. Rhodes, Ekaterina & Hoyle, Aaron & McPherson, Madeleine & Craig, Kira, 2022. "Understanding climate policy projections: A scoping review of energy-economy models in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Pisciella, Paolo & van Beesten, E. Ruben & Tomasgard, Asgeir, 2023. "Efficient coordination of top-down and bottom-up models for energy system design: An algorithmic approach," Energy, Elsevier, vol. 284(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01682272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.