IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v14y1994i2p107-115.html
   My bibliography  Save this article

On some measures of the severity of ruin in the classical Poisson model

Author

Listed:
  • Picard, Philippe

Abstract

No abstract is available for this item.

Suggested Citation

  • Picard, Philippe, 1994. "On some measures of the severity of ruin in the classical Poisson model," Insurance: Mathematics and Economics, Elsevier, vol. 14(2), pages 107-115, May.
  • Handle: RePEc:eee:insuma:v:14:y:1994:i:2:p:107-115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-6687(94)00006-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    2. Lkabous, Mohamed Amine & Wang, Zijia, 2023. "On the area in the red of Lévy risk processes and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 257-278.
    3. repec:hal:wpaper:hal-00870224 is not listed on IDEAS
    4. Wei, Li & Wu, Rong, 2002. "The joint distributions of several important actuarial diagnostics in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 451-462, June.
    5. Danijel Grahovac, 2018. "Densities of Ruin-Related Quantities in the Cramér-Lundberg Model with Pareto Claims," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 273-288, March.
    6. Li, Shuanming & Lu, Yi, 2013. "On the generalized Gerber–Shiu function for surplus processes with interest," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 127-134.
    7. Wang, Nan & Politis, Konstadinos, 2002. "Some characteristics of a surplus process in the presence of an upper barrier," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 231-241, April.
    8. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    9. Kolkovska, Ekaterina T. & Lopez-Mimbela, Jose A. & Morales, Jose Villa, 2005. "Occupation measure and local time of classical risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 573-584, December.
    10. Michael V. Boutsikas & Konstadinos Politis, 2017. "Exit Times, Overshoot and Undershoot for a Surplus Process in the Presence of an Upper Barrier," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 75-95, March.
    11. Dickson, David C. M. & Egidio dos Reis, Alfredo D., 1997. "The effect of interest on negative surplus," Insurance: Mathematics and Economics, Elsevier, vol. 21(1), pages 1-16, October.
    12. Li, Shuanming & Lu, Yi, 2017. "Distributional study of finite-time ruin related problems for the classical risk model," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 319-330.
    13. Dickson, David C. M. & Waters, Howard R., 1999. "Ruin probabilities with compounding assets," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 49-62, September.
    14. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    15. Cénac P. & Maume-Deschamps V. & Prieur C., 2012. "Some multivariate risk indicators: Minimization by using a Kiefer–Wolfowitz approach to the mirror stochastic algorithm," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 47-72, March.
    16. Wu, Rong & Wang, Guojing & Wei, Li, 2003. "Joint distributions of some actuarial random vectors containing the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 147-161, August.
    17. Li, Shuanming & Dickson, David C.M., 2006. "The maximum surplus before ruin in an Erlang(n) risk process and related problems," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 529-539, June.
    18. He, Jingmin & Wu, Rong & Zhang, Huayue, 2009. "Total duration of negative surplus for the risk model with debit interest," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1320-1326, May.
    19. Li, Shuanming & Ren, Jiandong, 2013. "The maximum severity of ruin in a perturbed risk process with Markovian arrivals," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 993-998.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:14:y:1994:i:2:p:107-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.