IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1812.08435.html
   My bibliography  Save this paper

An optimization approach to adaptive multi-dimensional capital management

Author

Listed:
  • G. A. Delsing
  • M. R. H. Mandjes
  • P. J. C. Spreij
  • E. M. M. Winands

Abstract

Firms should keep capital to offer sufficient protection against the risks they are facing. In the insurance context methods have been developed to determine the minimum capital level required, but less so in the context of firms with multiple business lines including allocation. The individual capital reserve of each line can be represented by means of classical models, such as the conventional Cram\'{e}r-Lundberg model, but the challenge lies in soundly modelling the correlations between the business lines. We propose a simple yet versatile approach that allows for dependence by introducing a common environmental factor. We present a novel Bayesian approach to calibrate the latent environmental state distribution based on observations concerning the claim processes. The calibration approach is adjusted for an environmental factor that changes over time. The convergence of the calibration procedure towards the true environmental state is deduced. We then point out how to determine the optimal initial capital of the different business lines under specific constraints on the ruin probability of subsets of business lines. Upon combining the above findings, we have developed an easy-to-implement approach to capital risk management in a multi-dimensional insurance risk model.

Suggested Citation

  • G. A. Delsing & M. R. H. Mandjes & P. J. C. Spreij & E. M. M. Winands, 2018. "An optimization approach to adaptive multi-dimensional capital management," Papers 1812.08435, arXiv.org.
  • Handle: RePEc:arx:papers:1812.08435
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1812.08435
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stéphane Loisel, 2005. "Differentiation of some functionals of risk processes and optimal reserve allocation," Post-Print hal-00397289, HAL.
    2. Stéphane Loisel, 2004. "Ruin theory with K lines of business," Post-Print hal-00379417, HAL.
    3. Cai, Jun & Li, Haijun, 2007. "Dependence properties and bounds for ruin probabilities in multivariate compound risk models," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 757-773, April.
    4. Stéphane Loisel, 2005. "Differentiation of functionals of risk processes and optimal reserve allocation," Post-Print hal-00397290, HAL.
    5. Stéphane Loisel, 2005. "Differentiation of some functionals of risk processes," Post-Print hal-00157739, HAL.
    6. Stéphane Loisel, 2007. "Time to ruin, insolvency penalties and dividends in a Markov-modulated multi-risk model with common shocks," Post-Print hal-00165776, HAL.
    7. Landriault, David & Lemieux, Christiane & Willmot, Gordon E., 2012. "An adaptive premium policy with a Bayesian motivation in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 370-378.
    8. Stéphane Loisel, 2005. "Differentiation of some functionals of multidimensional risk processes and determination of optimal reserve allocation," Post-Print hal-00397287, HAL.
    9. Laeven, Roger J. A. & Goovaerts, Marc J., 2004. "An optimization approach to the dynamic allocation of economic capital," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 299-319, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delsing, G.A. & Mandjes, M.R.H. & Spreij, P.J.C. & Winands, E.M.M., 2019. "An optimization approach to adaptive multi-dimensional capital management," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 87-97.
    2. Cénac P. & Maume-Deschamps V. & Prieur C., 2012. "Some multivariate risk indicators: Minimization by using a Kiefer–Wolfowitz approach to the mirror stochastic algorithm," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 47-72, March.
    3. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.
    4. Julien Callant & Julien Trufin & Pierre Zuyderhoff, 2022. "Some Expressions of a Generalized Version of the Expected Time in the Red and the Expected Area in Red," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 595-611, June.
    5. Liu, Jingchen & Woo, Jae-Kyung, 2014. "Asymptotic analysis of risk quantities conditional on ruin for multidimensional heavy-tailed random walks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 1-9.
    6. Esther Frostig & Adva Keren–Pinhasik, 2017. "Parisian ruin in the dual model with applications to the G/M/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 261-275, August.
    7. Florin Avram & Sooie-Hoe Loke, 2018. "On Central Branch/Reinsurance Risk Networks: Exact Results and Heuristics," Risks, MDPI, vol. 6(2), pages 1-18, April.
    8. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    9. Lkabous, Mohamed Amine & Wang, Zijia, 2023. "On the area in the red of Lévy risk processes and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 257-278.
    10. Romain Biard, 2013. "Asymptotic multivariate finite-time ruin probabilities with heavy-tailed claim amounts: Impact of dependence and optimal reserve allocation," Post-Print hal-00538571, HAL.
    11. Denuit, Michel & Robert, Christian Y., 2022. "Dynamic conditional mean risk sharing in the compound Poisson surplus model," LIDAM Discussion Papers ISBA 2022034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    13. Macci, Claudio, 2008. "Large deviations for the time-integrated negative parts of some processes," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 75-83, January.
    14. Zhu, Jinxia & Yang, Hailiang, 2009. "On differentiability of ruin functions under Markov-modulated models," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1673-1695, May.
    15. Romain Biard & Christophette Blanchet-Scalliet & Anne Eyraud-Loisel & Stéphane Loisel, 2013. "Impact of Climate Change on Heat Wave Risk," Risks, MDPI, vol. 1(3), pages 1-16, December.
    16. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    17. Peggy Cénac & Stéphane Loisel & Véronique Maume-Deschamps & Clémentine Prieur, 2014. "Risk indicators with several lines of business: comparison, asymptotic behavior and applications to optimal reserve allocation," Post-Print hal-00816894, HAL.
    18. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    19. G. A. Delsing & M. R. H. Mandjes & P. J. C. Spreij & E. M. M. Winands, 2020. "Asymptotics and Approximations of Ruin Probabilities for Multivariate Risk Processes in a Markovian Environment," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 927-948, September.
    20. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.08435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.