IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00477381.html
   My bibliography  Save this paper

An Exact Connection between two Solvable SDEs and a Nonlinear Utility Stochastic PDE

Author

Listed:
  • Nicole El Karoui

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique, LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique)

  • Mohamed Mrad

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

Abstract

Motivated by the work of Musiela and Zariphopoulou \cite{zar-03}, we study the Itô random fields which are utility functions $U(t,x)$ for any $(\omega,t)$. The main tool is the marginal utility $U_x(t,x)$ and its inverse expressed as the opposite of the derivative of the Fenchel conjuguate $\tU(t,y)$. Under regularity assumptions, we associate a $SDE(\mu, \sigma)$ and its adjoint SPDE$(\mu, \sigma)$ in divergence form whose $U_x(t,x)$ and its inverse $-\tU_y(t,y)$ are monotonic solutions. More generally, special attention is paid to rigorous justification of the dynamics of inverse flow of SDE. So that, we are able to extend to the solution of similar SPDEs the decomposition based on the solutions of two SDEs and their inverses. The second part is concerned with forward utilities, consistent with a given incomplete financial market, that can be observed but given exogenously to the investor. As in \cite{zar-03}, market dynamics are considered in an equilibrium state, so that the investor becomes indifferent to any action she can take in such a market. After having made explicit the constraints induced on the local characteristics of consistent utility and its conjugate, we focus on the marginal utility SPDE by showing that it belongs to the previous family of SPDEs. The associated two SDE's are related to the optimal wealth and the optimal state price density, given a pathwise explicit representation of the marginal utility. This new approach addresses several issues with a new perspective: dynamic programming principle, risk tolerance properties, inverse problems. Some examples and applications are given in the last section.

Suggested Citation

  • Nicole El Karoui & Mohamed Mrad, 2013. "An Exact Connection between two Solvable SDEs and a Nonlinear Utility Stochastic PDE," Post-Print hal-00477381, HAL.
  • Handle: RePEc:hal:journl:hal-00477381
    Note: View the original document on HAL open archive server: https://hal.science/hal-00477381v4
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00477381v4/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tahir Choulli & Christophe Stricker & Jia Li, 2007. "Minimal Hellinger martingale measures of order q," Finance and Stochastics, Springer, vol. 11(3), pages 399-427, July.
    2. Nicole El Karoui & Mohamed M'Rad, 2010. "Stochastic Utilities With a Given Optimal Portfolio : Approach by Stochastic Flows," Working Papers hal-00477380, HAL.
    3. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    4. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151, January.
    5. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    6. M. Musiela & T. Zariphopoulou, 2009. "Portfolio choice under dynamic investment performance criteria," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 161-170.
    7. Marco Frittelli & Marco Maggis, 2011. "Conditional Certainty Equivalent," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 41-59.
    8. Henderson, Vicky & Hobson, David, 2007. "Horizon-unbiased utility functions," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1621-1641, November.
    9. He Hua & Huang Chi-fu, 1994. "Consumption-Portfolio Policies: An Inverse Optimal Problem," Journal of Economic Theory, Elsevier, vol. 62(2), pages 257-293, April.
    10. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    11. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole El Karoui & Mohamed Mrad & Caroline Hillairet, 2020. "Ramsey Rule with Progressive Utility in Long Term Yield Curves Modeling," Post-Print hal-00974815, HAL.
    2. Gechun Liang & Moris S. Strub & Yuwei Wang, 2023. "Predictable Relative Forward Performance Processes: Multi-Agent and Mean Field Games for Portfolio Management," Papers 2311.04841, arXiv.org, revised Dec 2023.
    3. Ng, Kenneth Tsz Hin & Chong, Wing Fung, 2024. "Optimal investment in defined contribution pension schemes with forward utility preferences," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 192-211.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sigrid Källblad & Jan Obłój & Thaleia Zariphopoulou, 2018. "Dynamically consistent investment under model uncertainty: the robust forward criteria," Finance and Stochastics, Springer, vol. 22(4), pages 879-918, October.
    2. Sergey Nadtochiy & Michael Tehranchi, 2013. "Optimal investment for all time horizons and Martin boundary of space-time diffusions," Papers 1308.2254, arXiv.org, revised Jan 2014.
    3. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    4. Dietmar Leisen & Eckhard Platen, 2017. "Investing for the Long Run," Papers 1705.03929, arXiv.org.
    5. Drapeau, Samuel & Jamneshan, Asgar, 2016. "Conditional preference orders and their numerical representations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 106-118.
    6. Samuel Drapeau & Asgar Jamneshan, 2014. "Conditional Preference Orders and their Numerical Representations," Papers 1410.5466, arXiv.org, revised Jan 2016.
    7. Goncalo dos Reis & Vadim Platonov, 2020. "Forward utility and market adjustments in relative investment-consumption games of many players," Papers 2012.01235, arXiv.org, revised Mar 2022.
    8. Dejian Tian & Weidong Tian, 2016. "Comparative statics under κ-ambiguity for log-Brownian asset prices," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(4), pages 361-378, December.
    9. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    10. Sigrid Kallblad & Jan Obloj & Thaleia Zariphopoulou, 2013. "Time--consistent investment under model uncertainty: the robust forward criteria," Papers 1311.3529, arXiv.org, revised Nov 2014.
    11. Fahrenwaldt, Matthias Albrecht & Jensen, Ninna Reitzel & Steffensen, Mogens, 2020. "Nonrecursive separation of risk and time preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 95-108.
    12. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.
    13. Dominika Czyz & Karolina Safarzynska, 2023. "Catastrophic Damages and the Optimal Carbon Tax Under Loss Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(2), pages 303-340, June.
    14. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.
    15. Huang, Jianhui & Wang, Guangchen & Wu, Zhen, 2010. "Optimal premium policy of an insurance firm: Full and partial information," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 208-215, October.
    16. Chabakauri, Georgy, 2010. "Asset pricing with heterogeneous investors and portfolio constraints," LSE Research Online Documents on Economics 43142, London School of Economics and Political Science, LSE Library.
    17. Riedel, Frank, 2005. "Generic determinacy of equilibria with local substitution," Journal of Mathematical Economics, Elsevier, vol. 41(4-5), pages 603-616, August.
    18. Li, Hanwu & Riedel, Frank & Yang, Shuzhen, 2024. "Optimal consumption for recursive preferences with local substitution — the case of certainty," Journal of Mathematical Economics, Elsevier, vol. 110(C).
    19. Marc Arnold & Dirk Hackbarth & Tatjana Xenia Puhan, 2018. "Financing Asset Sales and Business Cycles [Does industry-wide distress affect defaulted firms? Evidence from creditor recoveries]," Review of Finance, European Finance Association, vol. 22(1), pages 243-277.
    20. Miyoshi, Yoshiyuki & Toda, Alexis Akira, 2017. "Growth effects of annuities and government transfers in perpetual youth models," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 1-6.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00477381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.