IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1311.3529.html
   My bibliography  Save this paper

Time--consistent investment under model uncertainty: the robust forward criteria

Author

Listed:
  • Sigrid Kallblad
  • Jan Obloj
  • Thaleia Zariphopoulou

Abstract

We combine forward investment performance processes and ambiguity averse portfolio selection. We introduce the notion of robust forward criteria which addresses the issues of ambiguity in model specification and in preferences and investment horizon specification. It describes the evolution of time-consistent ambiguity averse preferences. We first focus on establishing dual characterizations of the robust forward criteria. This offers various advantages as the dual problem amounts to a search for an infimum whereas the primal problem features a saddle-point. Our approach is based on ideas developed in Schied (2007) and Zitkovic (2009). We then study in detail non-volatile criteria. In particular, we solve explicitly the example of an investor who starts with a logarithmic utility and applies a quadratic penalty function. The investor builds a dynamical estimate of the market price of risk $\hat \lambda$ and updates her stochastic utility in accordance with the so-perceived elapsed market opportunities. We show that this leads to a time-consistent optimal investment policy given by a fractional Kelly strategy associated with $\hat \lambda$. The leverage is proportional to the investor's confidence in her estimate $\hat \lambda$.

Suggested Citation

  • Sigrid Kallblad & Jan Obloj & Thaleia Zariphopoulou, 2013. "Time--consistent investment under model uncertainty: the robust forward criteria," Papers 1311.3529, arXiv.org, revised Nov 2014.
  • Handle: RePEc:arx:papers:1311.3529
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1311.3529
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander M. G. Cox & David Hobson & Jan Obloj, 2011. "Utility theory front to back - inferring utility from agents' choices," Papers 1101.3572, arXiv.org, revised Jul 2012.
    2. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    3. Hernández-Hernández Daniel & Schied Alexander, 2006. "Robust utility maximization in a stochastic factor model," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-17, July.
    4. Föllmer Hans & Penner Irina, 2006. "Convex risk measures and the dynamics of their penalty functions," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-36, July.
    5. Hernández-Hernández Daniel & Schied Alexander, 2006. "Robust utility maximization in a stochastic factor model," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 109-125, July.
    6. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    7. Bion-Nadal, Jocelyne, 2009. "Time consistent dynamic risk processes," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 633-654, February.
    8. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    9. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    10. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    11. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    13. Schied Alexander & Wu Ching-Tang, 2005. "Duality theory for optimal investments under model uncertainty," Statistics & Risk Modeling, De Gruyter, vol. 23(3), pages 199-217, March.
    14. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    15. Susanne Klöppel & Martin Schweizer, 2007. "Dynamic Indifference Valuation Via Convex Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 599-627, October.
    16. Henderson, Vicky & Hobson, David, 2007. "Horizon-unbiased utility functions," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1621-1641, November.
    17. Karni, Edi & Schmeidler, David & Vind, Karl, 1983. "On State Dependent Preferences and Subjective Probabilities," Econometrica, Econometric Society, vol. 51(4), pages 1021-1031, July.
    18. He Hua & Huang Chi-fu, 1994. "Consumption-Portfolio Policies: An Inverse Optimal Problem," Journal of Economic Theory, Elsevier, vol. 62(2), pages 257-293, April.
    19. Tahir Choulli & Christophe Stricker & Jia Li, 2007. "Minimal Hellinger martingale measures of order q," Finance and Stochastics, Springer, vol. 11(3), pages 399-427, July.
    20. Freddy Delbaen & Shige Peng & Emanuela Rosazza Gianin, 2010. "Representation of the penalty term of dynamic concave utilities," Finance and Stochastics, Springer, vol. 14(3), pages 449-472, September.
    21. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    22. Alexander Schied, 2007. "Optimal investments for risk- and ambiguity-averse preferences: a duality approach," Finance and Stochastics, Springer, vol. 11(1), pages 107-129, January.
    23. John C. Hershey & Paul J. H. Schoemaker, 1985. "Probability Versus Certainty Equivalence Methods in Utility Measurement: Are they Equivalent?," Management Science, INFORMS, vol. 31(10), pages 1213-1231, October.
    24. Hernández-Hernández, Daniel & Schied, Alexander, 2007. "A control approach to robust utility maximization with logarithmic utility and time-consistent penalties," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 980-1000, August.
    25. Schied, Alexander & Wu, Ching-Tang, 2005. "Duality theory for optimal investments under model uncertainty," SFB 649 Discussion Papers 2005-025, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    26. M. Musiela & T. Zariphopoulou, 2009. "Portfolio choice under dynamic investment performance criteria," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 161-170.
    27. Gordan v{Z}itkovi'c, 2008. "A dual characterization of self-generation and exponential forward performances," Papers 0809.0739, arXiv.org, revised Dec 2009.
    28. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    29. Hernández-Hernández, Daniel & Schied, Alexander, 2005. "Robust utility maximization in a stochastic factor model," SFB 649 Discussion Papers 2006-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wahid Faidi & Hanen Mezghanni & Mohamed Mnif, 2019. "Expected Utility Maximization Problem Under State Constraints and Model Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1123-1152, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sigrid Källblad & Jan Obłój & Thaleia Zariphopoulou, 2018. "Dynamically consistent investment under model uncertainty: the robust forward criteria," Finance and Stochastics, Springer, vol. 22(4), pages 879-918, October.
    2. Sigrid Kallblad, 2013. "Risk- and ambiguity-averse portfolio optimization with quasiconcave utility functionals," Papers 1311.7419, arXiv.org.
    3. Sigrid Källblad, 2017. "Risk- and ambiguity-averse portfolio optimization with quasiconcave utility functionals," Finance and Stochastics, Springer, vol. 21(2), pages 397-425, April.
    4. Michail Anthropelos, 2011. "Forward Exponential Performances: Pricing and Optimal Risk Sharing," Papers 1109.3908, arXiv.org, revised Mar 2013.
    5. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    6. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.
    7. Hernández-Hernández, Daniel & Schied, Alexander, 2006. "A control approach to robust utility maximization with logarithmic utility and time-consistent penalties," SFB 649 Discussion Papers 2006-061, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    9. Juan Li & Wenqiang Li & Gechun Liang, 2020. "A game theoretical approach to homothetic robust forward investment performance processes in stochastic factor models," Papers 2005.10660, arXiv.org, revised May 2021.
    10. Hernández-Hernández, Daniel & Schied, Alexander, 2007. "Robust maximization of consumption with logarithmic utility," SFB 649 Discussion Papers 2007-030, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Schied, Alexander, 2007. "Robust optimal control for a consumption-investment problem," SFB 649 Discussion Papers 2007-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. repec:hum:wpaper:sfb649dp2006-061 is not listed on IDEAS
    13. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    14. Schied, Alexander, 2005. "Optimal investments for risk- and ambiguity-averse preferences: A duality approach," SFB 649 Discussion Papers 2005-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Masaaki Fukasawa & Mitja Stadje, 2018. "Perfect hedging under endogenous permanent market impacts," Finance and Stochastics, Springer, vol. 22(2), pages 417-442, April.
    16. Masaaki Fukasawa & Mitja Stadje, 2017. "Perfect hedging under endogenous permanent market impacts," Papers 1702.01385, arXiv.org.
    17. Jorn Sass & Dorothee Westphal, 2019. "Robust Utility Maximizing Strategies under Model Uncertainty and their Convergence," Papers 1909.01830, arXiv.org, revised Nov 2021.
    18. Yehuda Izhakian, 2012. "Ambiguity Measurement," Working Papers 12-01, New York University, Leonard N. Stern School of Business, Department of Economics.
    19. Thomas Knispel, 2012. "Asymptotics of robust utility maximization," Papers 1203.1191, arXiv.org.
    20. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    21. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1311.3529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.