IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1410.5466.html
   My bibliography  Save this paper

Conditional Preference Orders and their Numerical Representations

Author

Listed:
  • Samuel Drapeau
  • Asgar Jamneshan

Abstract

We provide an axiomatic system modeling conditional preference orders which is based on conditional set theory. Conditional numerical representations are introduced, and a conditional version of the theorems of Debreu on the existence of numerical representations is proved. The conditionally continuous representations follow from a conditional version of Debreu's Gap Lemma the proof of which relies on a conditional version of the axiom of choice, free of any measurable selection argument. We give a conditional version of the von Neumann and Morgenstern representation as well as automatic conditional continuity results, and illustrate them by examples.

Suggested Citation

  • Samuel Drapeau & Asgar Jamneshan, 2014. "Conditional Preference Orders and their Numerical Representations," Papers 1410.5466, arXiv.org, revised Jan 2016.
  • Handle: RePEc:arx:papers:1410.5466
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1410.5466
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Costis Skiadas, 1997. "Conditioning and Aggregation of Preferences," Econometrica, Econometric Society, vol. 65(2), pages 347-368, March.
    2. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    3. Maccheroni, Fabio & Marinacci, Massimo & Rustichini, Aldo, 2006. "Dynamic variational preferences," Journal of Economic Theory, Elsevier, vol. 128(1), pages 4-44, May.
    4. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    5. Juan Dubra & Fabio Maccheroni & Efe A. Ok, 2004. "Expected Utility Without the Completeness Axiom," Yale School of Management Working Papers ysm404, Yale School of Management.
    6. David M. Kreps & Evan L. Porteus, 2013. "Temporal von Neumann—Morgenstern and Induced Preferences," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 11, pages 181-206, World Scientific Publishing Co. Pte. Ltd..
    7. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    9. Trout Rader, 1963. "The Existence of a Utility Function to Represent Preferences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 30(3), pages 229-232.
    10. Wakker, Peter, 1987. "Subjective probabilities for state dependent continuous utility," Mathematical Social Sciences, Elsevier, vol. 14(3), pages 289-298, December.
    11. Tomasz R. Bielecki & Igor Cialenco & Samuel Drapeau & Martin Karliczek, 2013. "Dynamic Assessment Indices," Papers 1306.5198, arXiv.org, revised Aug 2014.
    12. Skiadas, Costis, 1997. "Subjective Probability under Additive Aggregation of Conditional Preferences," Journal of Economic Theory, Elsevier, vol. 76(2), pages 242-271, October.
    13. Dubra, Juan & Maccheroni, Fabio & Ok, Efe A., 2004. "Expected utility theory without the completeness axiom," Journal of Economic Theory, Elsevier, vol. 115(1), pages 118-133, March.
    14. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    15. Luce, R Duncan & Krantz, David H, 1971. "Conditional Expected Utility," Econometrica, Econometric Society, vol. 39(2), pages 253-271, March.
    16. Damir FILIPOVIC & Michael KUPPER & Nicolas VOGELPOTH, 2011. "Approaches to conditional risk," Swiss Finance Institute Research Paper Series 11-02, Swiss Finance Institute.
    17. Peleg, Bezalel, 1970. "Utility Functions for Partially Ordered Topological Spaces," Econometrica, Econometric Society, vol. 38(1), pages 93-96, January.
    18. Marco Frittelli & Marco Maggis, 2011. "Conditional Certainty Equivalent," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 41-59.
    19. Karni Edi, 1993. "Subjective Expected Utility Theory with State-Dependent Preferences," Journal of Economic Theory, Elsevier, vol. 60(2), pages 428-438, August.
    20. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
    21. Eliaz, Kfir & Ok, Efe A., 2006. "Indifference or indecisiveness? Choice-theoretic foundations of incomplete preferences," Games and Economic Behavior, Elsevier, vol. 56(1), pages 61-86, July.
    22. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    23. Karni, Edi, 1993. "A Definition of Subjective Probabilities with State-Dependent Preferences," Econometrica, Econometric Society, vol. 61(1), pages 187-198, January.
    24. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asgar Jamneshan & Michael Kupper & José Miguel Zapata-García, 2020. "Parameter-Dependent Stochastic Optimal Control in Finite Discrete Time," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 644-666, August.
    2. Wei-zhi Qin & Hendrik Rommeswinkel, 2024. "Quasi-separable preferences," Theory and Decision, Springer, vol. 96(4), pages 555-595, June.
    3. Marco Maggis & Andrea Maran, 2018. "Stochastic Dynamic Utilities and Inter-Temporal Preferences," Papers 1803.05244, arXiv.org, revised Feb 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drapeau, Samuel & Jamneshan, Asgar, 2016. "Conditional preference orders and their numerical representations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 106-118.
    2. Karni, Edi, 2007. "Foundations of Bayesian theory," Journal of Economic Theory, Elsevier, vol. 132(1), pages 167-188, January.
    3. Asgar Jamneshan & Michael Kupper & José Miguel Zapata-García, 2020. "Parameter-Dependent Stochastic Optimal Control in Finite Discrete Time," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 644-666, August.
    4. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
    5. Garcia, Rene & Renault, Eric & Semenov, Andrei, 2006. "Disentangling risk aversion and intertemporal substitution through a reference level," Finance Research Letters, Elsevier, vol. 3(3), pages 181-193, September.
    6. Zhao, Hui & Wang, Suxin, 2022. "Optimal investment and benefit adjustment problem for a target benefit pension plan with Cobb-Douglas utility and Epstein-Zin recursive utility," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1166-1180.
    7. Fahrenwaldt, Matthias Albrecht & Jensen, Ninna Reitzel & Steffensen, Mogens, 2020. "Nonrecursive separation of risk and time preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 95-108.
    8. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.
    9. Li, Hanwu & Riedel, Frank & Yang, Shuzhen, 2024. "Optimal consumption for recursive preferences with local substitution — the case of certainty," Journal of Mathematical Economics, Elsevier, vol. 110(C).
    10. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    11. Joshua Lanier & Bin Miao & John K.-H. Quah & Songfa Zhong, 2024. "Intertemporal Consumption with Risk: A Revealed Preference Analysis," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1319-1333, September.
    12. Junchi Ma & Mobolaji Ogunsolu & Jinniao Qiu & Ayşe Deniz Sezer, 2023. "Credit risk pricing in a consumption‐based equilibrium framework with incomplete accounting information," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 666-708, July.
    13. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    14. Yu Chen & Thomas Cosimano & Alex Himonas & Peter Kelly, 2014. "An Analytic Approach for Stochastic Differential Utility for Endowment and Production Economies," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 397-443, December.
    15. Campani, Carlos Heitor & Garcia, René, 2019. "Approximate analytical solutions for consumption/investment problems under recursive utility and finite horizon," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 364-384.
    16. Stan Olijslagers & Sweder van Wijnbergen, 2019. "Discounting the Future: on Climate Change, Ambiguity Aversion and Epstein-Zin Preferences," Tinbergen Institute Discussion Papers 19-030/VI, Tinbergen Institute.
    17. Benzoni, Luca & Collin-Dufresne, Pierre & Goldstein, Robert S., 2011. "Explaining asset pricing puzzles associated with the 1987 market crash," Journal of Financial Economics, Elsevier, vol. 101(3), pages 552-573, September.
    18. Pivato, Marcus, 2009. "Social choice with approximate interpersonal comparisons of well-being," MPRA Paper 17060, University Library of Munich, Germany.
    19. Dumas, Bernard & Uppal, Raman & Wang, Tan, 2000. "Efficient Intertemporal Allocations with Recursive Utility," Journal of Economic Theory, Elsevier, vol. 93(2), pages 240-259, August.
    20. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1410.5466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.