IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00168714.html
   My bibliography  Save this paper

Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation risk solvency margin

Author

Listed:
  • Stéphane Loisel

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Christian Mazza

    (Département de Mathématiques - Albert-Ludwigs-Universität Freiburg = University of Freiburg)

  • Didier Rullière

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

Abstract

We consider the classical risk model and carry out a sensitivity and robustness analysis of finite-time ruin probabilities. We provide algorithms to compute the related influence functions. We also prove the weak convergence of a sequence of empirical finite-time ruin probabilities starting from zero initial reserve toward a Gaussian random variable. We define the concepts of reliable finite-time ruin probability as a Value-at-Risk of the estimator of the finite-time ruin probability. To control this robust risk measure, an additional initial reserve is needed and called Estimation Risk Solvency Margin (ERSM). We apply our results to show how portfolio experience could be rewarded by cut-offs in solvency capital requirements. An application to catastrophe contamination and numerical examples are also developed.

Suggested Citation

  • Stéphane Loisel & Christian Mazza & Didier Rullière, 2008. "Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation risk solvency margin," Post-Print hal-00168714, HAL.
  • Handle: RePEc:hal:journl:hal-00168714
    DOI: 10.1016/j.insmatheco.2007.08.007
    Note: View the original document on HAL open archive server: https://hal.science/hal-00168714v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00168714v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.insmatheco.2007.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rulliere, Didier & Loisel, Stephane, 2004. "Another look at the Picard-Lefevre formula for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 187-203, October.
    2. H. Panjer, Harry & Shaun Wang,, 1993. "On the Stability of Recursive Formulas," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 227-258, November.
    3. Marceau, Etienne & Rioux, Jacques, 2001. "On robustness in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 167-185, October.
    4. Mazza, Christian & Rulliere, Didier, 2004. "A link between wave governed random motions and ruin processes," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 205-222, October.
    5. Frees, Edward W., 1986. "Nonparametric Estimation of the Probability of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 16(S1), pages 81-90, April.
    6. Ignatov, Zvetan G. & Kaishev, Vladimir K. & Krachunov, Rossen S., 2001. "An improved finite-time ruin probability formula and its Mathematica implementation," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 375-386, December.
    7. Croux, Kristof & Veraverbeke, Noel, 1990. "Nonparametric estimators for the probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 9(2-3), pages 127-130, September.
    8. Hipp, Christian, 1989. "Estimators and Bootstrap Confidence Intervals for Ruin Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 19(1), pages 57-70, April.
    9. Picard, Philippe & Lefevre, Claude, 1998. "The moments of ruin time in the classical risk model with discrete claim size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 23(2), pages 157-172, November.
    10. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 22-26, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claude Lefèvre & Stéphane Loisel, 2009. "Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 425-441, September.
    2. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    3. Stéphane Loisel & Nicolas Privault, 2009. "Sensitivity analysis and density estimation for finite-time ruin probabilities," Post-Print hal-00201347, HAL.
    4. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    5. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    6. Touazi, A. & Benouaret, Z. & Aissani, D. & Adjabi, S., 2017. "Nonparametric estimation of the claim amount in the strong stability analysis of the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 78-83.
    7. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    8. Li Qin & Susan M. Pitts, 2012. "Nonparametric Estimation of the Finite-Time Survival Probability with Zero Initial Capital in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 919-936, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    2. Li Qin & Susan M. Pitts, 2012. "Nonparametric Estimation of the Finite-Time Survival Probability with Zero Initial Capital in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 919-936, December.
    3. Rulliere, Didier & Loisel, Stephane, 2004. "Another look at the Picard-Lefevre formula for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 187-203, October.
    4. S. Pitts, 1994. "Nonparametric estimation of compound distributions with applications in insurance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 537-555, September.
    5. Honglong You & Yuan Gao, 2019. "Non-Parametric Threshold Estimation for the Wiener–Poisson Risk Model," Mathematics, MDPI, vol. 7(6), pages 1-11, June.
    6. Zhang, Zhimin & Yang, Hailiang, 2013. "Nonparametric estimate of the ruin probability in a pure-jump Lévy risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 24-35.
    7. Zhang, Zhimin & Yang, Hailiang, 2014. "Nonparametric estimation for the ruin probability in a Lévy risk model under low-frequency observation," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 168-177.
    8. You, Honglong & Guo, Junyi & Jiang, Jiancheng, 2020. "Interval estimation of the ruin probability in the classical compound Poisson risk model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    9. Venegas-Martínez, Francisco & Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo, 2015. "Riesgo operativo en el sector salud en Colombia: 2013," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(43), pages 7-36, segundo s.
    10. Gathy, Maude & Lefèvre, Claude, 2010. "On the Lagrangian Katz family of distributions as a claim frequency model," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 76-83, August.
    11. Goffard, Pierre-Olivier & Lefèvre, Claude, 2018. "Duality in ruin problems for ordered risk models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 44-52.
    12. Claude Lefèvre & Stéphane Loisel, 2009. "Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 425-441, September.
    13. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    14. Zhang, Huiming & Liu, Yunxiao & Li, Bo, 2014. "Notes on discrete compound Poisson model with applications to risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 325-336.
    15. Paul Embrechts & Marco Frei, 2009. "Panjer recursion versus FFT for compound distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 497-508, July.
    16. Oshime, Takayoshi & Shimizu, Yasutaka, 2018. "Parametric inference for ruin probability in the classical risk model," Statistics & Probability Letters, Elsevier, vol. 133(C), pages 28-37.
    17. Sundt, Bjorn, 2002. "Recursive evaluation of aggregate claims distributions," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 297-322, June.
    18. Ambagaspitiya, R. S., 1995. "A family of discrete distributions," Insurance: Mathematics and Economics, Elsevier, vol. 16(2), pages 107-127, May.
    19. Yuan Gao & Honglong You, 2021. "The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered α -Stable Lévy Subordinator," Mathematics, MDPI, vol. 9(21), pages 1-9, October.
    20. Yuan Gao & Lingju Chen & Jiancheng Jiang & Honglong You, 2020. "Nonparametric Estimation of the Ruin Probability in the Classical Compound Poisson Risk Model," JRFM, MDPI, vol. 13(12), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00168714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.