IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00165791.html
   My bibliography  Save this paper

The win-first probability under interest force

Author

Listed:
  • Didier Rullière

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Stéphane Loisel

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

Abstract

In a classical risk model under constant interest force, we study the probability that the surplus of an insurance company reaches an upper barrier before a lower barrier. We define this probability as win-first probability. Borrowing ideas from life-insurance theory, hazard rates of the maximum of the surplus before ruin, regarded as a remaining future lifetime random variable, are studied, and provide an original derivation of the win-first probability. We propose an algorithm to efficiently compute this risk-return indicator and its derivatives in the general case, as well as bounds of these quantities. The efficiency of the proposed algorithm is compared with adaptations of other existing methods, and its interest is illustrated by the computation of the expected amount of dividends paid until ruin in a risk model with a dividend barrier strategy.

Suggested Citation

  • Didier Rullière & Stéphane Loisel, 2005. "The win-first probability under interest force," Post-Print hal-00165791, HAL.
  • Handle: RePEc:hal:journl:hal-00165791
    DOI: 10.1016/j.insmatheco.2005.06.004
    Note: View the original document on HAL open archive server: https://hal.science/hal-00165791
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00165791/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.insmatheco.2005.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rulliere, Didier & Loisel, Stephane, 2004. "Another look at the Picard-Lefevre formula for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 187-203, October.
    2. Brekelmans, Ruud & De Waegenaere, Anja, 2001. "Approximating the finite-time ruin probability under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 217-229, October.
    3. Sundt, Bjorn & Teugels, Jozef L., 1995. "Ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 7-22, April.
    4. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    5. Sundt, Bjorn & Teugels, Jozef L., 1997. "The adjustment function in ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 19(2), pages 85-94, April.
    6. Wang, Nan & Politis, Konstadinos, 2002. "Some characteristics of a surplus process in the presence of an upper barrier," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 231-241, April.
    7. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre-Olivier Goffard, 2019. "Two-Sided Exit Problems in the Ordered Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 539-549, June.
    2. Yuan, Haili & Hu, Yijun, 2008. "Absolute ruin in the compound Poisson risk model with constant dividend barrier," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2086-2094, October.
    3. Pierre-Olivier Goffard, 2017. "Two-sided exit problems in the ordered risk model," Working Papers hal-01528204, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    2. Wu, Rong & Wang, Guojing & Zhang, Chunsheng, 2005. "On a joint distribution for the risk process with constant interest force," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 365-374, June.
    3. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    4. Wang, Rongming & Yang, Hailiang & Wang, Hanxing, 2004. "On the distribution of surplus immediately after ruin under interest force and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 703-714, December.
    5. Yuen, Kam C. & Wang, Guojing & Li, Wai K., 2007. "The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 104-112, January.
    6. Yang, Wenquan & Hu, Yijun, 2009. "Upper bounds for ultimate ruin probabilities in the Sparre Andersen risk model with interest and a nonlinear dividend barrier," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 63-69, January.
    7. Jun Cai & Runhuan Feng & Gordon E. Willmot, 2009. "The Compound Poisson Surplus Model with Interest and Liquid Reserves: Analysis of the Gerber–Shiu Discounted Penalty Function," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 401-423, September.
    8. Olena Ragulina & Jonas Šiaulys, 2020. "Upper Bounds and Explicit Formulas for the Ruin Probability in the Risk Model with Stochastic Premiums and a Multi-Layer Dividend Strategy," Mathematics, MDPI, vol. 8(11), pages 1-35, October.
    9. Chunwei Wang & Chuancun Yin, 2009. "Dividend payments in the classical risk model under absolute ruin with debit interest," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 247-262, May.
    10. Phung Duy Quang, 2017. "Upper Bounds for Ruin Probability in a Controlled Risk Process under Rates of Interest with Homogenous Markov Chains," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(3), pages 1-4.
    11. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    12. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    13. Claude Lefèvre & Philippe Picard, 2013. "Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach," Risks, MDPI, vol. 1(3), pages 1-21, December.
    14. Jasiulewicz, Helena, 2001. "Probability of ruin with variable premium rate in a Markovian environment," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 291-296, October.
    15. Cai, Jun & Dickson, David C. M., 2003. "Upper bounds for ultimate ruin probabilities in the Sparre Andersen model with interest," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 61-71, February.
    16. Yang, Hailiang & Zhang, Lihong, 2001. "On the distribution of surplus immediately after ruin under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 247-255, October.
    17. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    18. Cardoso, Rui M. R. & R. Waters, Howard, 2003. "Recursive calculation of finite time ruin probabilities under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 659-676, December.
    19. Diasparra, Maikol & Romera, Rosario, 2006. "Optimal policies for discrete time risk processes with a Markov chain investment model," DES - Working Papers. Statistics and Econometrics. WS ws062408, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Yuan, Haili & Hu, Yijun, 2008. "Absolute ruin in the compound Poisson risk model with constant dividend barrier," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2086-2094, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00165791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.