IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p1885-d437601.html
   My bibliography  Save this article

Upper Bounds and Explicit Formulas for the Ruin Probability in the Risk Model with Stochastic Premiums and a Multi-Layer Dividend Strategy

Author

Listed:
  • Olena Ragulina

    (Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64, 01601 Kyiv, Ukraine
    These authors contributed equally to this work.)

  • Jonas Šiaulys

    (Institute of Mathematics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
    These authors contributed equally to this work.)

Abstract

This paper is devoted to the investigation of the ruin probability in the risk model with stochastic premiums where dividends are paid according to a multi-layer dividend strategy. We obtain an exponential bound for the ruin probability and investigate conditions, under which it holds for a number of distributions of the premium and claim sizes. Next, we use the exponential bound to construct non-exponential bounds for the ruin probability. We show that the non-exponential bounds turn out to be tighter than the exponential one in some cases. Moreover, we derive explicit formulas for the ruin probability when the premium and claim sizes have either the hyperexponential or the Erlang distributions and apply them to investigate how tight the bounds are. To illustrate and analyze the results obtained, we give numerical examples.

Suggested Citation

  • Olena Ragulina & Jonas Šiaulys, 2020. "Upper Bounds and Explicit Formulas for the Ruin Probability in the Risk Model with Stochastic Premiums and a Multi-Layer Dividend Strategy," Mathematics, MDPI, vol. 8(11), pages 1-35, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1885-:d:437601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/1885/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/1885/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Hansjörg Albrecher & Jürgen Hartinger, 2007. "A Risk Model with Multilayer Dividend Strategy," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 43-64.
    3. Vladimir Kalashnikov, 1999. "Bounds for Ruin Probabilities in the Presence of Large Claims and their Comparison," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 116-128.
    4. Lin, X. Sheldon & Sendova, Kristina P., 2008. "The compound Poisson risk model with multiple thresholds," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 617-627, April.
    5. Sundt, Bjorn & Teugels, Jozef L., 1995. "Ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 7-22, April.
    6. Yebin Cheng & Qihe Tang, 2003. "Moments of the Surplus before Ruin and the Deficit at Ruin in the Erlang(2) Risk Process," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(1), pages 1-12.
    7. Jie-Hua Xie & Wei Zou, 2017. "On the expected discounted penalty function for a risk model with dependence under a multi-layer dividend strategy," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(4), pages 1898-1915, February.
    8. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    9. Hans Gerber & Elias Shiu, 2005. "The Time Value of Ruin in a Sparre Andersen Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 49-69.
    10. Andrei Badescu & David Landriault, 2008. "Recursive Calculation of the Dividend Moments in a Multi-threshold Risk Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(1), pages 74-88.
    11. Lin, X.Sheldon & Pavlova, Kristina P., 2006. "The compound Poisson risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 57-80, February.
    12. Ramsay, Colin M., 2003. "A solution to the ruin problem for Pareto distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 109-116, August.
    13. De Vylder, F. & Goovaerts, M., 1984. "Bounds for classical ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 3(2), pages 121-131, April.
    14. Yang, Hu & Zhang, Zhimin, 2009. "The perturbed compound Poisson risk model with multi-layer dividend strategy," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 70-78, January.
    15. Dufresne, François & Gerber, Hans U., 1989. "Three Methods to Calculate the Probability of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 19(1), pages 71-90, April.
    16. Yang, Hu & Zhang, Zhimin, 2008. "Gerber-Shiu discounted penalty function in a Sparre Andersen model with multi-layer dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 984-991, June.
    17. Embrechts, P. & Villasenor, J. A., 1988. "Ruin estimates for large claims," Insurance: Mathematics and Economics, Elsevier, vol. 7(4), pages 269-274, December.
    18. Zhou, Zhongbao & Xiao, Helu & Deng, Yingchun, 2015. "Markov-dependent risk model with multi-layer dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 273-286.
    19. Emilio Gómez-Déniz & José María Sarabia & Enrique Calderín-Ojeda, 2019. "Ruin Probability Functions and Severity of Ruin as a Statistical Decision Problem," Risks, MDPI, vol. 7(2), pages 1-16, June.
    20. Jiang, Wuyuan & Yang, Zhaojun & Li, Xinping, 2012. "The discounted penalty function with multi-layer dividend strategy in the phase-type risk model," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1358-1366.
    21. Yunyun Wang & Wenguang Yu & Yujuan Huang, 2019. "Estimating the Gerber-Shiu Function in a Compound Poisson Risk Model with Stochastic Premium Income," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-18, July.
    22. Sun, Li-Juan, 2005. "The expected discounted penalty at ruin in the Erlang (2) risk process," Statistics & Probability Letters, Elsevier, vol. 72(3), pages 205-217, May.
    23. Edita Kizinevič & Jonas Šiaulys, 2018. "The Exponential Estimate of the Ultimate Ruin Probability for the Non-Homogeneous Renewal Risk Model," Risks, MDPI, vol. 6(1), pages 1-17, March.
    24. Deng, Chao & Zhou, Jieming & Deng, Yingchun, 2012. "The Gerber–Shiu discounted penalty function in a delayed renewal risk model with multi-layer dividend strategy," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1648-1656.
    25. Zhang, Zhimin & Yang, Hu, 2010. "A generalized penalty function in the Sparre-Andersen risk model with two-sided jumps," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 597-607, April.
    26. Landriault, David, 2008. "Constant dividend barrier in a risk model with interclaim-dependent claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 31-38, February.
    27. Cossette, Hélène & Marceau, Etienne & Marri, Fouad, 2008. "On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 444-455, December.
    28. Shi, Yafeng & Liu, Peng & Zhang, Chunsheng, 2013. "On the compound Poisson risk model with dependence and a threshold dividend strategy," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1998-2006.
    29. Wei Wang, 2015. "The Perturbed Sparre Andersen Model with Interest and a Threshold Dividend Strategy," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 251-283, June.
    30. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    31. Chi, Yichun & Lin, X. Sheldon, 2011. "On the threshold dividend strategy for a generalized jump-diffusion risk model," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 326-337, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    2. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    3. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    4. Zhou, Zhongbao & Xiao, Helu & Deng, Yingchun, 2015. "Markov-dependent risk model with multi-layer dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 273-286.
    5. Lu, Yi & Li, Shuanming, 2009. "The Markovian regime-switching risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 296-303, April.
    6. Zhimin Zhang & Hailiang Yang & Hu Yang, 2012. "On a Sparre Andersen Risk Model with Time-Dependent Claim Sizes and Jump-Diffusion Perturbation," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 973-995, December.
    7. Lin, X. Sheldon & Sendova, Kristina P., 2008. "The compound Poisson risk model with multiple thresholds," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 617-627, April.
    8. Jiang, Wuyuan & Yang, Zhaojun & Li, Xinping, 2012. "The discounted penalty function with multi-layer dividend strategy in the phase-type risk model," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1358-1366.
    9. Apostolos D. Papaioannou & Lewis Ramsden, 2022. "Recursive Approaches for Multi-Layer Dividend Strategies in a Phase-Type Renewal Risk Model," Risks, MDPI, vol. 11(1), pages 1-21, December.
    10. Mitric, Ilie-Radu & Sendova, Kristina P. & Tsai, Cary Chi-Liang, 2010. "On a multi-threshold compound Poisson process perturbed by diffusion," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 366-375, March.
    11. Hélène Cossette & Etienne Marceau & Fouad Marri, 2011. "Constant Dividend Barrier in a Risk Model with a Generalized Farlie-Gumbel-Morgenstern Copula," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 487-510, September.
    12. Deng, Chao & Zhou, Jieming & Deng, Yingchun, 2012. "The Gerber–Shiu discounted penalty function in a delayed renewal risk model with multi-layer dividend strategy," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1648-1656.
    13. Landriault, David & Lemieux, Christiane & Willmot, Gordon E., 2012. "An adaptive premium policy with a Bayesian motivation in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 370-378.
    14. Wuyuan Jiang & Zhaojun Yang, 2014. "The expected discounted penalty function for two classes of risk processes perturbed by diffusion with multiple thresholds," Indian Journal of Pure and Applied Mathematics, Springer, vol. 45(4), pages 479-495, August.
    15. Jin, Can & Li, Shuanming & Wu, Xueyuan, 2016. "On the occupation times in a delayed Sparre Andersen risk model with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 304-316.
    16. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    17. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    18. Yang, Hu & Zhang, Zhimin, 2009. "The perturbed compound Poisson risk model with multi-layer dividend strategy," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 70-78, January.
    19. Yang, Hu & Zhang, Zhimin, 2008. "Gerber-Shiu discounted penalty function in a Sparre Andersen model with multi-layer dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 984-991, June.
    20. Li, Shu & Landriault, David & Lemieux, Christiane, 2015. "A risk model with varying premiums: Its risk management implications," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 38-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1885-:d:437601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.