IDEAS home Printed from https://ideas.repec.org/p/hal/ciredw/hal-00866426.html
   My bibliography  Save this paper

The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks

Author

Listed:
  • Vincent Gitz

    (CREFI - CREFI - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse)

  • Jean Charles Hourcade

    (CREFI - CREFI - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse)

  • Philippe Ciais

    (LSCE - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] - UVSQ - Université de Versailles Saint-Quentin-en-Yvelines - INSU - CNRS - Institut national des sciences de l'Univers - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - DRF (CEA) - Direction de Recherche Fondamentale (CEA) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives, ICOS-ATC - ICOS-ATC - LSCE - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] - UVSQ - Université de Versailles Saint-Quentin-en-Yvelines - INSU - CNRS - Institut national des sciences de l'Univers - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - DRF (CEA) - Direction de Recherche Fondamentale (CEA) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives)

Abstract

This paper addresses the timing of the use of biological carbon sequestration and its capacity to alleviate the carbon constraint on the energy sector. We constructed a stochastic optimal control model balancing the costs of fossil emission abatement, the opportunity costs of lands allocated to afforestation, and the costs of uncertain climate damages. We show that a minor part of the sequestration potential should start immediately as a 'brake', slowing down both the rate of growth of concentrations and the rate of abatement in the energy sector, thus increasing the option value of the emission trajectories. But, most of the potential is put in reserve to be used as a ''safety valve'' after the resolution of uncertainty, if a higher and faster decarbonization is required : sequestration cuts off the peaks of costs of fossil abatement and postpones the pivoting of the energy system by up to two decades.

Suggested Citation

  • Vincent Gitz & Jean Charles Hourcade & Philippe Ciais, 2005. "The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks," CIRED Working Papers hal-00866426, HAL.
  • Handle: RePEc:hal:ciredw:hal-00866426
    Note: View the original document on HAL open archive server: https://hal.science/hal-00866426
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00866426/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dyson, Freeman J., 1977. "Can we control the carbon dioxide in the atmosphere?," Energy, Elsevier, vol. 2(3), pages 287-291.
    2. RICHARD M. Adams & DARIUS M. Adams & JOHN M. Callaway & CHING‐CHENG Chang & BRUCE A. Mccarl, 1993. "Sequestering Carbon On Agricultural Land: Social Cost And Impacts On Timber Markets," Contemporary Economic Policy, Western Economic Association International, vol. 11(1), pages 76-87, January.
    3. Minh Ha-Duong & Patrice Dumas, 2004. "An abrupt stochastic damage function to analyse climate policy benefits," Post-Print halshs-00002451, HAL.
    4. Vincent Gitz & Philippe Ciais, 2003. "Amplifying effects of land-use change on future atmospheric CO2 levels," Post-Print halshs-00009826, HAL.
    5. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6809), pages 184-187, November.
    6. Philippe Ambrosi & Jean-Charles Hourcade & Stéphane Hallegatte & Franck Lecocq & Patrice Dumas & Minh Ha Duong, 2009. "Optimal Control Models and Elicitation of Attitudes towards Climate Damages," International Series in Operations Research & Management Science, in: Jerzy A. Filar & Alain Haurie (ed.), Uncertainty and Environmental Decision Making, chapter 0, pages 177-209, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haim, David & Plantinga, Andrew J. & Thomann, Enrique, 2014. "The optimal time path for carbon abatement and carbon sequestration under uncertainty: The case of stochastic targeted stock," Resource and Energy Economics, Elsevier, vol. 36(1), pages 151-165.
    2. Tavoni, Massimo & Sohngen, Brent & Bosetti, Valentina, 2007. "Forestry and the carbon market response to stabilize climate," Energy Policy, Elsevier, vol. 35(11), pages 5346-5353, November.
    3. H. Böttcher & A. Freibauer & Y. Scholz & V. Gitz & Philippe Ciais & M. Mund & T. Wutzler & E.-D. Schulze, 2012. "Setting priorities for land management to mitigate climate change," Post-Print hal-00716172, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent Gitz & Jean Charles Hourcade & Philippe Ciais, 2005. "The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks," Working Papers hal-00866426, HAL.
    2. Vincent Gitz & Jean Charles Hourcade & Philippe Ciais, 2006. "The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks," Working Papers halshs-00009338, HAL.
    3. Valentina Bosetti & Laurent Gilotte, 2005. "Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?," Working Papers 2005.86, Fondazione Eni Enrico Mattei.
    4. Baptiste Perrissin Fabert & Antonin Pottier & Etienne Espagne & Patrice Dumas & Franck Nadaud, 2014. "Why are climate policies of the present decade so crucial for keeping the 2 °C target credible?," Climatic Change, Springer, vol. 126(3), pages 337-349, October.
    5. Perrissin Fabert, Baptiste & Espagne, Etienne & Antonin, Pottier & Patrice, Dumas, 2014. "The Comparative Impact of Integrated Assessment Models' Structures on Optimal Mitigation Policies," Climate Change and Sustainable Development 177304, Fondazione Eni Enrico Mattei (FEEM).
    6. Stéphane Hallegatte, 2005. "Interactions d'échelles en économie : Application à l'évaluation intégré des dommages du changement climatique et des événements extrêmes," CIRED Working Papers halshs-00008712, HAL.
    7. Renaud Crassous & Jean Charles Hourcade & Olivier Sassi, 2006. "Endogenous structural change and climate targets," Post-Print halshs-00009335, HAL.
    8. Brian C. O'Neill & Paul Crutzen & Arnulf Gr�bler & Minh Ha Duong & Klaus Keller & Charles Kolstad & Jonathan Koomey & Andreas Lange & Michael Obersteiner & Michael Oppenheimer & William Pepper & Warre, 2006. "Learning and climate change," Climate Policy, Taylor & Francis Journals, vol. 6(5), pages 585-589, September.
      • Brian C. O'Neill & Paul Crutzen & Arnulf Grübler & Minh Ha-Duong & Klaus Keller & Charles Kolstad & Jonathan Koomey & Andreas Lange & Michael Obersteiner & Michael Oppenheimer & William Pepper & Warre, 2006. "Learning and climate change," Post-Print halshs-00134718, HAL.
    9. Céline Guivarch, 2012. "2°C or not 2°C?," Post-Print halshs-00757079, HAL.
    10. van Kooten, G. Cornelis, 2004. "Economics of Forest and Agricultural Carbon Sinks," Working Papers 18160, University of Victoria, Resource Economics and Policy.
    11. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    12. Hamdi-Cherif, Meriem & Waisman, Henri & Guivarch, Céline & Hourcade, Jean-Charles, 2012. "Mitigation costs in second-best economies: time profile of emission reductions and sequencing of accompanying measures," Conference papers 332206, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    14. Lecocq, Franck & Crassous, Renaud, 2003. "International climate regime beyond 2012 - are quota allocation rules robust to uncertainty?," Policy Research Working Paper Series 3000, The World Bank.
    15. Renaud Crassous, Jean-Charles Hourcade, Olivier Sassi, 2006. "Endogenous Structural Change and Climate Targets Modeling Experiments with Imaclim-R," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 259-276.
    16. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    17. Jung, Martina, 2003. "The Role of Forestry Sinks in the CDM - Analysing the Effects of Policy Decisions on the Carbon Market," Discussion Paper Series 26293, Hamburg Institute of International Economics.
    18. Jean-Charles Hourcade & Philippe Ambrosi & Patrice Dumas, 2009. "Beyond the Stern Review: Lessons from a risky venture at the limits of the cost–benefit analysis," Post-Print hal-00716769, HAL.
    19. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    20. Franck Lecocq & Jean-Charles Hourcade, 2016. "Unspoken Ethical Issues in the Climate Affair: Insights from a Theoretical Analysis of Negotiation Mandates," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 311-340, Springer.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:ciredw:hal-00866426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.