IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00464460.html
   My bibliography  Save this paper

A model of influence with a continuum of actions

Author

Listed:
  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Agnieszka Rusinowska

    (GATE - Groupe d'analyse et de théorie économique - UL2 - Université Lumière - Lyon 2 - ENS LSH - Ecole Normale Supérieure Lettres et Sciences Humaines - CNRS - Centre National de la Recherche Scientifique)

Abstract

In the paper, we generalize a two-action (yes-no) model of influence to a framework in which every player has a continuum of actions and he has to choose one of them. We assume the set of actions to be an interval. Each player has an inclination to choose one of the actions. Due to influence among players, the final decision of a player, i.e., his choice of one action, may be different from his original inclination. In particular, a coalition of players with the same inclination may influence another player with different inclination, and as a result of this influence, the decision of the player is closer to the inclination of the influencing coalition than his inclination was. We introduce and study a measure of such a positive influence of a coalition on a player. Several unanimous influence functions in this generalized framework are considered. Moreover, we investigate other tools for analyzing influence, like the concept of a follower of a given coalition, its particular case - a perfect follower, and the kernel of an influence function. We study properties of these concepts. Also the set of fixed points under a given influence function is analyzed. Furthermore, we study linear influence functions. We also introduce a measure of a negative influence of a coalition on a player.

Suggested Citation

  • Michel Grabisch & Agnieszka Rusinowska, 2009. "A model of influence with a continuum of actions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00464460, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00464460
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00464460
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00464460/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wu-Hsiung Huang, 2004. "Is proximity preservation rational in social choice theory?," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(3), pages 315-332, December.
    2. Michel Grabisch & Agnieszka Rusinowska, 2010. "A model of influence with an ordered set of possible actions," Theory and Decision, Springer, vol. 69(4), pages 635-656, October.
    3. Bolger, E M, 1986. "Power Indices for Multicandidate Voting Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 175-186.
    4. Dan S. Felsenthal & Moshé Machover, 1998. "The Measurement of Voting Power," Books, Edward Elgar Publishing, number 1489.
    5. Abdou, J, 1988. "Neutral Veto Correspondences with a Continuum of Alternatives," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 135-164.
    6. Edward M. Bolger, 2000. "A consistent value for games with n players and r alternatives," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 93-99.
    7. Hu, Xingwei & Shapley, Lloyd S., 2003. "On authority distributions in organizations: controls," Games and Economic Behavior, Elsevier, vol. 45(1), pages 153-170, October.
    8. Edward M. Bolger, 2002. "Characterizations of two power indices for voting games with r alternatives," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(4), pages 709-721.
    9. Josep Freixas & William S. Zwicker, 2003. "Weighted voting, abstention, and multiple levels of approval," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 21(3), pages 399-431, December.
    10. Josep Freixas, 2005. "Banzhaf Measures for Games with Several Levels of Approval in the Input and Output," Annals of Operations Research, Springer, vol. 137(1), pages 45-66, July.
    11. Hu, Xingwei & Shapley, Lloyd S., 2003. "On authority distributions in organizations: equilibrium," Games and Economic Behavior, Elsevier, vol. 45(1), pages 132-152, October.
    12. Bolger, Edward M, 1993. "A Value for Games with n Players and r Alternatives," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(4), pages 319-334.
    13. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grabisch, Michel & Rusinowska, Agnieszka, 2013. "A model of influence based on aggregation functions," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 316-330.
    2. Agnieszka Rusinowska & Rudolf Berghammer & Harrie de Swart & Michel Grabisch, 2011. "Social networks: Prestige, centrality, and influence (Invited paper)," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00633859, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grabisch, Michel & Rusinowska, Agnieszka, 2011. "A model of influence with a continuum of actions," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 576-587.
    2. Michel Grabisch & Agnieszka Rusinowska, 2010. "A model of influence with an ordered set of possible actions," Theory and Decision, Springer, vol. 69(4), pages 635-656, October.
    3. Grabisch, Michel & Rusinowska, Agnieszka, 2011. "Influence functions, followers and command games," Games and Economic Behavior, Elsevier, vol. 72(1), pages 123-138, May.
    4. René van den Brink & Agnieszka Rusinowska & Frank Steffen, 2009. "Measuring Power and Satisfaction in Societies with Opinion Leaders: Dictator and Opinion Leader Properties," Tinbergen Institute Discussion Papers 09-052/1, Tinbergen Institute.
    5. Sébastien Courtin & Zéphirin Nganmeni & Bertrand Tchantcho, 2016. "The Shapley–Shubik power index for dichotomous multi-type games," Theory and Decision, Springer, vol. 81(3), pages 413-426, September.
    6. René Brink & Agnieszka Rusinowska & Frank Steffen, 2013. "Measuring power and satisfaction in societies with opinion leaders: an axiomatization," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 671-683, September.
    7. Sascha Kurz, 2014. "Measuring Voting Power in Convex Policy Spaces," Economies, MDPI, vol. 2(1), pages 1-33, March.
    8. Freixas, Josep & Zwicker, William S., 2009. "Anonymous yes-no voting with abstention and multiple levels of approval," Games and Economic Behavior, Elsevier, vol. 67(2), pages 428-444, November.
    9. Josep Freixas, 2005. "Banzhaf Measures for Games with Several Levels of Approval in the Input and Output," Annals of Operations Research, Springer, vol. 137(1), pages 45-66, July.
    10. Josep Freixas & Roberto Lucchetti, 2016. "Power in voting rules with abstention: an axiomatization of a two components power index," Annals of Operations Research, Springer, vol. 244(2), pages 455-474, September.
    11. Courtin, Sébastien & Nganmeni, Zéphirin & Tchantcho, Bertrand, 2017. "Dichotomous multi-type games with a coalition structure," Mathematical Social Sciences, Elsevier, vol. 86(C), pages 9-17.
    12. Bilbao, J.M. & Jiménez, N. & López, J.J., 2010. "The selectope for bicooperative games," European Journal of Operational Research, Elsevier, vol. 204(3), pages 522-532, August.
    13. Kurz, Sascha & Mayer, Alexander & Napel, Stefan, 2021. "Influence in weighted committees," European Economic Review, Elsevier, vol. 132(C).
    14. Josep Freixas & Montserrat Pons, 2021. "An Appropriate Way to Extend the Banzhaf Index for Multiple Levels of Approval," Group Decision and Negotiation, Springer, vol. 30(2), pages 447-462, April.
    15. Pongou, Roland & Tchantcho, Bertrand & Tedjeugang, Narcisse, 2014. "Power theories for multi-choice organizations and political rules: Rank-order equivalence," Operations Research Perspectives, Elsevier, vol. 1(1), pages 42-49.
    16. Luisa Monroy & Francisco Fernández, 2014. "Banzhaf index for multiple voting systems. An application to the European Union," Annals of Operations Research, Springer, vol. 215(1), pages 215-230, April.
    17. Birkmeier Olga & Käufl Andreas & Pukelsheim Friedrich, 2011. "Abstentions in the German Bundesrat and ternary decision rules in weighted voting systems," Statistics & Risk Modeling, De Gruyter, vol. 28(1), pages 1-16, March.
    18. Maria Ekes, 2013. "Application of Generalized Owen Value for Voting Games in Partition Function Form," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 32, pages 43-53.
    19. M. Álvarez-Mozos & O. Tejada, 2015. "The Banzhaf value in the presence of externalities," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(4), pages 781-805, April.
    20. M. Musegaas & P. E. M. Borm & M. Quant, 2018. "Three-valued simple games," Theory and Decision, Springer, vol. 85(2), pages 201-224, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00464460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.