IDEAS home Printed from https://ideas.repec.org/p/hai/wpaper/200614.html
   My bibliography  Save this paper

Testing for State Dependence with Time-Variant Transition Probabilities

Author

Listed:
  • Timothy J. Halliday

    (Department of Economics, University of Hawaii at Manoa
    John A. Burns School of Medicine)

Abstract

We consider the identification of state dependence in a dynamic Logit model with timevariant transition probabilities and an arbitrary distribution of the unobserved heterogeneity. We derive a simple result that allows us to test for the presence of state dependence in this model. Monte Carlo evidence suggests that this test has desirable properties even when there are some violations of the model’s assumptions. We also consider alternative tests for state dependence that will have desirable properties only when the transition probabilities do not depend on time and provide evidence that there is an "acceptable" range in which ignoring time-dependence does not matter too much. We conclude with an application to the Barker Hypothesis.

Suggested Citation

  • Timothy J. Halliday, 2006. "Testing for State Dependence with Time-Variant Transition Probabilities," Working Papers 200614, University of Hawaii at Manoa, Department of Economics.
  • Handle: RePEc:hai:wpaper:200614
    as

    Download full text from publisher

    File URL: http://www.economics.hawaii.edu/research/workingpapers/WP_06-14.pdf
    File Function: First version, 2006
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thierry Magnac, 2004. "Panel Binary Variables and Sufficiency: Generalizing Conditional Logit," Econometrica, Econometric Society, vol. 72(6), pages 1859-1876, November.
    2. Timothy J. Halliday, 2008. "Heterogeneity, state dependence and health," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 499-516, November.
    3. Timothy Halliday, 2006. "Income Risk and Health," Working Papers 200612, University of Hawaii at Manoa, Department of Economics.
    4. repec:pri:cheawb:case_paxson_economic_status_paper is not listed on IDEAS
    5. Bo E. Honoré & Elie Tamer, 2002. "Bounds on Parameters in Dynamic Discrete Choice Models," CAM Working Papers 2004-23, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics, revised Aug 2004.
    6. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    7. Anne Case & Darren Lubotsky & Christina Paxson, 2002. "Economic Status and Health in Childhood: The Origins of the Gradient," American Economic Review, American Economic Association, vol. 92(5), pages 1308-1334, December.
    8. repec:pri:cheawb:case_paxson_economic_status_paper.pdf is not listed on IDEAS
    9. Hahn, Jinyong, 2001. "The Information Bound Of A Dynamic Panel Logit Model With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 17(5), pages 913-932, October.
    10. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy J. Halliday, 2008. "Heterogeneity, state dependence and health," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 499-516, November.
    2. Halliday Timothy, 2011. "Health Inequality over the Life-Cycle," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(3), pages 1-21, October.
    3. Francesco Bartolucci & Valentina Nigro & Claudia Pigini, 2018. "Testing for state dependence in binary panel data with individual covariates by a modified quadratic exponential model," Econometric Reviews, Taylor & Francis Journals, vol. 37(1), pages 61-88, January.
    4. Bartolucci, Francesco & Nigro, Valentina & Pigini, Claudia, 2013. "Testing for state dependence in binary panel data with individual covariates," MPRA Paper 48233, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    2. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    3. Bartolucci, Francesco & Nigro, Valentina, 2012. "Pseudo conditional maximum likelihood estimation of the dynamic logit model for binary panel data," Journal of Econometrics, Elsevier, vol. 170(1), pages 102-116.
    4. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," ANU Working Papers in Economics and Econometrics 2020-671, Australian National University, College of Business and Economics, School of Economics.
    5. Timothy Halliday, 2006. "Identifying State Dependence in Non-Stationary Processes," Working Papers 200601, University of Hawaii at Manoa, Department of Economics.
    6. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," Discussion Papers Series 626, School of Economics, University of Queensland, Australia.
    7. Fu Ouyang & Thomas Tao Yang, 2022. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," Papers 2202.12062, arXiv.org, revised Feb 2024.
    8. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    9. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    10. D'Addio, Anna Cristina & Honoré, Bo E., 2010. "Duration Dependence and Timevarying Variables in Discrete Time Duration Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(2), December.
    11. Kevin Dano, 2023. "Transition Probabilities and Moment Restrictions in Dynamic Fixed Effects Logit Models," Papers 2303.00083, arXiv.org, revised Dec 2023.
    12. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    13. Carro, Jesus M., 2007. "Estimating dynamic panel data discrete choice models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 503-528, October.
    14. Bo E. Honoré & Martin Weidner, 2021. "Moment Conditions for Dynamic Panel Logit Models with Fixed Effects," Working Papers 2021-79, Princeton University. Economics Department..
    15. Chris Muris & Pedro Raposo & Sotiris Vandoros, 2020. "A dynamic ordered logit model with fixed effects," Papers 2008.05517, arXiv.org.
    16. Ghanem, Dalia, 2017. "Testing identifying assumptions in nonseparable panel data models," Journal of Econometrics, Elsevier, vol. 197(2), pages 202-217.
    17. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    18. Christopher Dobronyi & Jiaying Gu & Kyoo il Kim, 2021. "Identification of Dynamic Panel Logit Models with Fixed Effects," Papers 2104.04590, arXiv.org, revised Apr 2021.
    19. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    20. Bo E. Honor'e & Martin Weidner, 2020. "Moment Conditions for Dynamic Panel Logit Models with Fixed Effects," Papers 2005.05942, arXiv.org, revised Dec 2023.
    21. Bo E. Honoré & Martin Weidner, 2020. "Moment Conditions for Dynamic Panel Logit Models with Fixed Effects," CeMMAP working papers CWP38/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    22. Christopher R. Dobronyi & Fu Ouyang & Thomas Tao Yang, 2023. "Revisiting Panel Data Discrete Choice Models with Lagged Dependent Variables," Papers 2301.09379, arXiv.org, revised Aug 2024.
    23. Francesco Bartolucci & Valentina Nigro, 2010. "A Dynamic Model for Binary Panel Data With Unobserved Heterogeneity Admitting a √n-Consistent Conditional Estimator," Econometrica, Econometric Society, vol. 78(2), pages 719-733, March.
    24. Francesco Bartolucci† & Valentina Nigro, 2007. "A dynamic model for binary panel data with unobserved heterogeneity admitting a Vn-consistent conditional estimator," CEIS Research Paper 97, Tor Vergata University, CEIS.

    More about this item

    Keywords

    Dynamic Panel Data Models; State Dependence; Health;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hai:wpaper:200614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Web Technician (email available below). General contact details of provider: https://edirc.repec.org/data/deuhius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.