IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.00083.html
   My bibliography  Save this paper

Transition Probabilities and Moment Restrictions in Dynamic Fixed Effects Logit Models

Author

Listed:
  • Kevin Dano

Abstract

Dynamic logit models are popular tools in economics to measure state dependence. This paper introduces a new method to derive moment restrictions in a large class of such models with strictly exogenous regressors and fixed effects. We exploit the common structure of logit-type transition probabilities and elementary properties of rational fractions, to formulate a systematic procedure that scales naturally with model complexity (e.g the lag order or the number of observed time periods). We detail the construction of moment restrictions in binary response models of arbitrary lag order as well as first-order panel vector autoregressions and dynamic multinomial logit models. Identification of common parameters and average marginal effects is also discussed for the binary response case. Finally, we illustrate our results by studying the dynamics of drug consumption amongst young people inspired by Deza (2015).

Suggested Citation

  • Kevin Dano, 2023. "Transition Probabilities and Moment Restrictions in Dynamic Fixed Effects Logit Models," Papers 2303.00083, arXiv.org, revised Dec 2023.
  • Handle: RePEc:arx:papers:2303.00083
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.00083
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo E Honoré & Áureo de Paula, 2021. "Identification in simple binary outcome panel data models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 78-93.
    2. Victor Aguirregabiria & Jesus M. Carro, 2021. "Identification of Average Marginal Effects in Fixed Effects Dynamic Discrete Choice Models," Papers 2107.06141, arXiv.org, revised Jul 2024.
    3. Bryan S. Graham, 2016. "Homophily and transitivity in dynamic network formation," CeMMAP working papers 16/16, Institute for Fiscal Studies.
    4. Hahn, Jinyong, 2001. "The Information Bound Of A Dynamic Panel Logit Model With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 17(5), pages 913-932, October.
    5. Kitazawa, Yoshitsugu, 2022. "Transformations and moment conditions for dynamic fixed effects logit models," Journal of Econometrics, Elsevier, vol. 229(2), pages 350-362.
    6. Christopher Dobronyi & Jiaying Gu & Kyoo il Kim, 2021. "Identification of Dynamic Panel Logit Models with Fixed Effects," Papers 2104.04590, arXiv.org, revised Apr 2021.
    7. Chris Muris & Pedro Raposo & Sotiris Vandoros, 2020. "A Dynamic Ordered Logit Model with Fixed Effects," Department of Economics Working Papers 2020-14, McMaster University.
    8. Bryan S. Graham, 2016. "Homophily and transitivity in dynamic network formation," CeMMAP working papers CWP16/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Browning, Martin & Carro, Jesus M., 2014. "Dynamic binary outcome models with maximal heterogeneity," Journal of Econometrics, Elsevier, vol. 178(2), pages 805-823.
    10. Bo E. Honoré & Martin Weidner, 2021. "Moment Conditions for Dynamic Panel Logit Models with Fixed Effects," Working Papers 2021-79, Princeton University. Economics Department..
    11. Deza, Monica, 2015. "Is there a stepping stone effect in drug use? Separating state dependence from unobserved heterogeneity within and between illicit drugs," Journal of Econometrics, Elsevier, vol. 184(1), pages 193-207.
    12. Magnac, Thierry, 2000. "Subsidised Training and Youth Employment: Distinguishing Unobserved Heterogeneity from State Dependence in Labour Market Histories," Economic Journal, Royal Economic Society, vol. 110(466), pages 805-837, October.
    13. Bo E. Honoré & Chris Muris & Martin Weidner, 2021. "Dynamic Ordered Panel Logit Models," Working Papers 2021-14, Princeton University. Economics Department..
    14. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    15. David Card & Dean R. Hyslop, 2005. "Estimating the Effects of a Time-Limited Earnings Subsidy for Welfare-Leavers," Econometrica, Econometric Society, vol. 73(6), pages 1723-1770, November.
    16. Jean‐Pierre Dubé & Günter J. Hitsch & Peter E. Rossi, 2010. "State dependence and alternative explanations for consumer inertia," RAND Journal of Economics, RAND Corporation, vol. 41(3), pages 417-445, September.
    17. Bo E. Honoré & Martin Weidner, 2020. "Moment Conditions for Dynamic Panel Logit Models with Fixed Effects," CeMMAP working papers CWP38/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Bo E. Honoré & Luojia Hu & Ekaterini Kyriazidou & Martin Weidner, 2023. "Simultaneity in binary outcome models with an application to employment for couples," Empirical Economics, Springer, vol. 64(6), pages 3197-3233, June.
    19. Egger, Peter & Pfaffermayr, Michael & Weber, Andrea, 2003. "Sectoral Adjustment of Employment: The Impact of Outsourcing and Trade at the Micro Level," IZA Discussion Papers 921, Institute of Labor Economics (IZA).
    20. Yoshitsugu Kitazawa, 2013. "Exploration of dynamic fixed effects logit models from a traditional angle," Discussion Papers 60, Kyushu Sangyo University, Faculty of Economics.
    21. Christopher R. Dobronyi & Fu Ouyang & Thomas Tao Yang, 2023. "Revisiting Panel Data Discrete Choice Models with Lagged Dependent Variables," Papers 2301.09379, arXiv.org, revised Aug 2024.
    22. Stéphane Bonhomme, 2012. "Functional Differencing," Econometrica, Econometric Society, vol. 80(4), pages 1337-1385, July.
    23. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    24. Yoshitsugu Kitazawa, 2016. "Root-N consistent estimations of time dummies for the dynamic fixed effects logit models: Monte Carlo illustrations," Discussion Papers 72, Kyushu Sangyo University, Faculty of Economics.
    25. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. St'ephane Bonhomme & Kevin Dano, 2023. "Functional Differencing in Networks," Papers 2307.11484, arXiv.org.
    2. Andrew Chesher & Adam Rosen & Yuanqi Zhang, 2024. "Robust analysis of short panels," IFS Working Papers WCWP01/24, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavit Pakel & Martin Weidner, 2023. "Bounds on Average Effects in Discrete Choice Panel Data Models," Papers 2309.09299, arXiv.org, revised May 2024.
    2. Geert Dhaene & Martin Weidner, 2023. "Approximate Functional Differencing," Papers 2301.13736, arXiv.org, revised May 2023.
    3. Bo E Honoré & Áureo de Paula, 2021. "Identification in simple binary outcome panel data models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 78-93.
    4. Victor Aguirregabiria & Jesus Carro, 2021. "Identification of Average Marginal Effects in Fixed Effects Dynamic Discrete Choice Models," Working Papers tecipa-701, University of Toronto, Department of Economics.
    5. Christopher Dobronyi & Jiaying Gu & Kyoo il Kim, 2021. "Identification of Dynamic Panel Logit Models with Fixed Effects," Papers 2104.04590, arXiv.org, revised Apr 2021.
    6. Fu Ouyang & Thomas Tao Yang, 2022. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," Papers 2202.12062, arXiv.org, revised Feb 2024.
    7. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    8. Irene Botosaru & Chris Muris & Senay Sokullu, 2022. "Time-Varying Linear Transformation Models with Fixed Effects and Endogeneity for Short Panels," Department of Economics Working Papers 2022-01, McMaster University.
    9. Bo E. Honor'e & Chris Muris & Martin Weidner, 2021. "Dynamic Ordered Panel Logit Models," Papers 2107.03253, arXiv.org, revised Apr 2024.
    10. Hugo Kruiniger, 2021. "Root-n-consistent Conditional ML estimation of dynamic panel logit models with fixed effects," Papers 2103.04973, arXiv.org, revised Apr 2021.
    11. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," ANU Working Papers in Economics and Econometrics 2020-671, Australian National University, College of Business and Economics, School of Economics.
    12. Bo E. Honoré & Martin Weidner, 2021. "Moment Conditions for Dynamic Panel Logit Models with Fixed Effects," Working Papers 2021-79, Princeton University. Economics Department..
    13. Khan, S. & Ponomareva, M. & Tamer, E., 2023. "Identification of dynamic binary response models," Journal of Econometrics, Elsevier, vol. 237(1).
    14. Bo E. Honoré & Martin Weidner, 2020. "Moment Conditions for Dynamic Panel Logit Models with Fixed Effects," CeMMAP working papers CWP38/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Irene Botosaru & Chris Muris, 2022. "Identification of time-varying counterfactual parameters in nonlinear panel models," Papers 2212.09193, arXiv.org, revised Nov 2023.
    16. Christopher R. Dobronyi & Fu Ouyang & Thomas Tao Yang, 2023. "Revisiting Panel Data Discrete Choice Models with Lagged Dependent Variables," Papers 2301.09379, arXiv.org, revised Aug 2024.
    17. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," Discussion Papers Series 626, School of Economics, University of Queensland, Australia.
    18. Williams, Benjamin, 2020. "Nonparametric identification of discrete choice models with lagged dependent variables," Journal of Econometrics, Elsevier, vol. 215(1), pages 286-304.
    19. Bo E. Honoré & Luojia Hu & Ekaterini Kyriazidou & Martin Weidner, 2023. "Simultaneity in binary outcome models with an application to employment for couples," Empirical Economics, Springer, vol. 64(6), pages 3197-3233, June.
    20. Victor Aguirregabiria, 2023. "Dynamic demand for differentiated products with fixed-effects unobserved heterogeneity," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 1-25.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.00083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.