IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2104.04590.html
   My bibliography  Save this paper

Identification of Dynamic Panel Logit Models with Fixed Effects

Author

Listed:
  • Christopher Dobronyi
  • Jiaying Gu
  • Kyoo il Kim

Abstract

We show that the identification problem for a class of dynamic panel logit models with fixed effects has a connection to the truncated moment problem in mathematics. We use this connection to show that the sharp identified set of the structural parameters is characterized by a set of moment equality and inequality conditions. This result provides sharp bounds in models where moment equality conditions do not exist or do not point identify the parameters. We also show that the sharp identifying content of the non-parametric latent distribution of the fixed effects is characterized by a vector of its generalized moments, and that the number of moments grows linearly in T. This final result lets us point identify, or sharply bound, specific classes of functionals, without solving an optimization problem with respect to the latent distribution.

Suggested Citation

  • Christopher Dobronyi & Jiaying Gu & Kyoo il Kim, 2021. "Identification of Dynamic Panel Logit Models with Fixed Effects," Papers 2104.04590, arXiv.org, revised Apr 2021.
  • Handle: RePEc:arx:papers:2104.04590
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2104.04590
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Aguirregabiria & Jesus M. Carro, 2021. "Identification of Average Marginal Effects in Fixed Effects Dynamic Discrete Choice Models," Papers 2107.06141, arXiv.org, revised Jul 2024.
    2. Bo E. Honor'e & Martin Weidner, 2020. "Moment Conditions for Dynamic Panel Logit Models with Fixed Effects," Papers 2005.05942, arXiv.org, revised Dec 2023.
    3. Noel Cressie & Paul Holland, 1983. "Characterizing the manifest probabilities of latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 48(1), pages 129-141, March.
    4. Arellano, Manuel & Honore, Bo, 2001. "Panel data models: some recent developments," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 53, pages 3229-3296, Elsevier.
    5. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    6. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    7. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    8. Hahn, Jinyong, 2001. "The Information Bound Of A Dynamic Panel Logit Model With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 17(5), pages 913-932, October.
    9. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    10. Buchinsky, Moshe & Hahn, Jinyong & Kim, Kyoo il, 2010. "Semiparametric information bound of dynamic discrete choice models," Economics Letters, Elsevier, vol. 108(2), pages 109-112, August.
    11. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    12. Bo E. Honoré & Martin Weidner, 2020. "Moment Conditions for Dynamic Panel Logit Models with Fixed Effects," CeMMAP working papers CWP38/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Aguirregabiria & Jesus M. Carro, 2021. "Identification of Average Marginal Effects in Fixed Effects Dynamic Discrete Choice Models," Papers 2107.06141, arXiv.org, revised Jul 2024.
    2. Kevin Dano, 2023. "Transition Probabilities and Moment Restrictions in Dynamic Fixed Effects Logit Models," Papers 2303.00083, arXiv.org, revised Dec 2023.
    3. Cavit Pakel & Martin Weidner, 2023. "Bounds on Average Effects in Discrete Choice Panel Data Models," Papers 2309.09299, arXiv.org, revised May 2024.
    4. Irene Botosaru & Chris Muris & Senay Sokullu, 2022. "Time-Varying Linear Transformation Models with Fixed Effects and Endogeneity for Short Panels," Department of Economics Working Papers 2022-01, McMaster University.
    5. Geert Dhaene & Martin Weidner, 2023. "Approximate Functional Differencing," Papers 2301.13736, arXiv.org, revised May 2023.
    6. Irene Botosaru & Chris Muris, 2022. "Identification of time-varying counterfactual parameters in nonlinear panel models," Papers 2212.09193, arXiv.org, revised Nov 2023.
    7. Christopher R. Dobronyi & Fu Ouyang & Thomas Tao Yang, 2023. "Revisiting Panel Data Discrete Choice Models with Lagged Dependent Variables," Papers 2301.09379, arXiv.org, revised Aug 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin Dano, 2023. "Transition Probabilities and Moment Restrictions in Dynamic Fixed Effects Logit Models," Papers 2303.00083, arXiv.org, revised Dec 2023.
    2. Khan, S. & Ponomareva, M. & Tamer, E., 2023. "Identification of dynamic binary response models," Journal of Econometrics, Elsevier, vol. 237(1).
    3. Cavit Pakel & Martin Weidner, 2023. "Bounds on Average Effects in Discrete Choice Panel Data Models," Papers 2309.09299, arXiv.org, revised May 2024.
    4. Fu Ouyang & Thomas Tao Yang, 2022. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," Papers 2202.12062, arXiv.org, revised Feb 2024.
    5. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    6. Irene Botosaru & Chris Muris & Senay Sokullu, 2022. "Time-Varying Linear Transformation Models with Fixed Effects and Endogeneity for Short Panels," Department of Economics Working Papers 2022-01, McMaster University.
    7. Bo E. Honor'e & Chris Muris & Martin Weidner, 2021. "Dynamic Ordered Panel Logit Models," Papers 2107.03253, arXiv.org, revised Apr 2024.
    8. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    9. Bo E Honoré & Áureo de Paula, 2021. "Identification in simple binary outcome panel data models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 78-93.
    10. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," ANU Working Papers in Economics and Econometrics 2020-671, Australian National University, College of Business and Economics, School of Economics.
    11. Chris Muris & Pedro Raposo & Sotiris Vandoros, 2020. "A dynamic ordered logit model with fixed effects," Papers 2008.05517, arXiv.org.
    12. Victor Aguirregabiria & Jesus Carro, 2021. "Identification of Average Marginal Effects in Fixed Effects Dynamic Discrete Choice Models," Working Papers tecipa-701, University of Toronto, Department of Economics.
    13. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," Discussion Papers Series 626, School of Economics, University of Queensland, Australia.
    14. Geert Dhaene & Martin Weidner, 2023. "Approximate Functional Differencing," Papers 2301.13736, arXiv.org, revised May 2023.
    15. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    16. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    17. Victor Aguirregabiria, 2023. "Dynamic demand for differentiated products with fixed-effects unobserved heterogeneity," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 1-25.
    18. Shakeeb Khan & Fu Ouyang & Elie Tamer, 2020. "Inference on Semiparametric Multinomial Response Models," Discussion Papers Series 627, School of Economics, University of Queensland, Australia.
    19. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    20. Dmitry Arkhangelsky & Guido W. Imbens, 2019. "Doubly Robust Identification for Causal Panel Data Models," Papers 1909.09412, arXiv.org, revised Feb 2022.
    21. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    22. Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2023. "Conditional inference and bias reduction for partial effects estimation of fixed-effects logit models," Empirical Economics, Springer, vol. 64(5), pages 2257-2290, May.
    23. Carro, Jesus M., 2007. "Estimating dynamic panel data discrete choice models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 503-528, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.04590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.