IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v56y1996i1p42-59.html
   My bibliography  Save this article

On Edgeworth Expansion and Moving Block Bootstrap for StudentizedM-Estimators in Multiple Linear Regression Models

Author

Listed:
  • Lahiri, Soumendra Nath

Abstract

This paper considers the multiple linear regression modelYi=xi'[beta]+[var epsilon]i,i=i, ..., n, wherexi's are knownp-1 vectors,[beta]is ap-1 vector of parameters, and[var epsilon]1,[var epsilon]2, ... are stationary, strongly mixing random variables. Let[beta]ndenote anM-estimator of[beta]corresponding to some score function[psi]. Under some conditions on[psi],xi's and[var epsilon]i's, a two-term Edgeworth expansion for Studentized multivariateM-estimator is proved. Furthermore, it is shown that the moving block bootstrap is second-order correct for some suitable bootstrap analog of Studentized[beta]n.

Suggested Citation

  • Lahiri, Soumendra Nath, 1996. "On Edgeworth Expansion and Moving Block Bootstrap for StudentizedM-Estimators in Multiple Linear Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 42-59, January.
  • Handle: RePEc:eee:jmvana:v:56:y:1996:i:1:p:42-59
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(96)90003-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    2. Inoue, Atsushi & Shintani, Mototsugu, 2006. "Bootstrapping GMM estimators for time series," Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
    3. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    4. Romano, Joseph P. & Wolf, Michael, 2001. "Improved nonparametric confidence intervals in time series regressions," DES - Working Papers. Statistics and Econometrics. WS ws010201, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    6. Ching-Chuan Tsong, 2009. "Assessing the Accuracy of Event Forecasts," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 5(2), pages 219-240, July.
    7. S. N. Lahiri, 2018. "Uncertainty Quantification in Robust Inference for Irregularly Spaced Spatial Data Using Block Bootstrap," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 173-221, December.
    8. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    9. Yixiao Sun & Peter C.B. Phillips, 2008. "Optimal Bandwidth Choice for Interval Estimation in GMM Regression," Cowles Foundation Discussion Papers 1661, Cowles Foundation for Research in Economics, Yale University.
    10. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
    11. Amilcar Velez, 2023. "The Local Projection Residual Bootstrap for AR(1) Models," Papers 2309.01889, arXiv.org, revised Feb 2024.
    12. Peter Buhlmann, 2007. "Bootstrap schemes for time series (in Russian)," Quantile, Quantile, issue 3, pages 37-56, September.
    13. Janis J. Zvingelis, 2000. "On Bootstrap Coverage Probability with Dependent Data," Econometric Society World Congress 2000 Contributed Papers 1231, Econometric Society.
    14. Wolfgang Härdle & Joel Horowitz & Jens‐Peter Kreiss, 2003. "Bootstrap Methods for Time Series," International Statistical Review, International Statistical Institute, vol. 71(2), pages 435-459, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:56:y:1996:i:1:p:42-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.