On Edgeworth Expansion and Moving Block Bootstrap for StudentizedM-Estimators in Multiple Linear Regression Models
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Paulo M. D. C. Parente & Richard J. Smith, 2021.
"Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
- Paulo M.D.C. Parente & Richard J. Smith, 2018. "Quasi-Maximum Likelihood and the Kernel Block Bootstrap for Nonlinear Dynamic Models," Working Papers REM 2018/59, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Paulo Parente & Richard J. Smith, 2019. "Quasi-maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," CeMMAP working papers CWP60/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Inoue, Atsushi & Shintani, Mototsugu, 2006.
"Bootstrapping GMM estimators for time series,"
Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
- Atsushi Inoue & Mototsugu Shintani, 2001. "Bootstrapping GMM Estimators for Time Series," Vanderbilt University Department of Economics Working Papers 0129, Vanderbilt University Department of Economics, revised Aug 2003.
- Goncalves, Silvia & White, Halbert, 2004.
"Maximum likelihood and the bootstrap for nonlinear dynamic models,"
Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
- Goncalves, Silvia & White, Halbert, 2000. "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," University of California at San Diego, Economics Working Paper Series qt1bj657ff, Department of Economics, UC San Diego.
- Goncalves, Silvia & White, Halbert, 2002. "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," University of California at San Diego, Economics Working Paper Series qt8hx21540, Department of Economics, UC San Diego.
- Silvia Gonçalves & Halbert White, 2002. "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," CIRANO Working Papers 2002s-41, CIRANO.
- Amilcar Velez, 2023. "The Local Projection Residual Bootstrap for AR(1) Models," Papers 2309.01889, arXiv.org, revised Feb 2024.
- Romano, Joseph P. & Wolf, Michael, 2001.
"Improved nonparametric confidence intervals in time series regressions,"
DES - Working Papers. Statistics and Econometrics. WS
ws010201, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Joseph P. Romano & Michael Wolf, 2006. "Improved Nonparametric Confidence Intervals in Time Series Regressions," IEW - Working Papers 273, Institute for Empirical Research in Economics - University of Zurich.
- Joseph P. Romano & Michael Wolf, 2002. "Improved nonparametric confidence intervals in time series regressions," Economics Working Papers 635, Department of Economics and Business, Universitat Pompeu Fabra.
- Peter Buhlmann, 2007. "Bootstrap schemes for time series (in Russian)," Quantile, Quantile, issue 3, pages 37-56, September.
- La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023.
"A higher-order correct fast moving-average bootstrap for dependent data,"
Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
- Davide La Vecchia & Alban Moor & Olivier Scaillet, 2020. "A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data," Papers 2001.04867, arXiv.org, revised Jan 2022.
- La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2020. "A higher-order correct fast moving-average bootstrap for dependent data," Working Papers unige:129395, University of Geneva, Geneva School of Economics and Management.
- Davide La Vecchia & Alban Moor & O. Scaillet, 2020. "A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data," Swiss Finance Institute Research Paper Series 20-01, Swiss Finance Institute.
- Ching-Chuan Tsong, 2009. "Assessing the Accuracy of Event Forecasts," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 5(2), pages 219-240, July.
- S. N. Lahiri, 2018. "Uncertainty Quantification in Robust Inference for Irregularly Spaced Spatial Data Using Block Bootstrap," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 173-221, December.
- Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Janis J. Zvingelis, 2000. "On Bootstrap Coverage Probability with Dependent Data," Econometric Society World Congress 2000 Contributed Papers 1231, Econometric Society.
- Yixiao Sun & Peter C.B. Phillips, 2008. "Optimal Bandwidth Choice for Interval Estimation in GMM Regression," Cowles Foundation Discussion Papers 1661, Cowles Foundation for Research in Economics, Yale University.
- Wolfgang Härdle & Joel Horowitz & Jens‐Peter Kreiss, 2003. "Bootstrap Methods for Time Series," International Statistical Review, International Statistical Institute, vol. 71(2), pages 435-459, August.
- Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
More about this item
Keywords
Edgeworth expansion moving block bootstrap M-estimators multiple linear regression stationarity strong mixing Studentization (null);Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:56:y:1996:i:1:p:42-59. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.