IDEAS home Printed from https://ideas.repec.org/p/gii/giihei/heidwp05-2025.html
   My bibliography  Save this paper

Forecasting Banking System Liquidity Using Payment System Data in Uzbekistan

Author

Listed:
  • Shakhzod Abdullaevich Makhmudov

    (The Central Bank of Uzbekistan)

Abstract

Forecasting banking system liquidity is crucial for the e ective monetary policy implementation. This study investigates the e ectiveness of various econometric and machine learning models in predicting the autonomous factors of banking system liquidity. The research compares widely used econometric models such as SARIMA, Exponential Smoothing, and Prophet alongside ma- chine learning models like Random Forest, applying various preprocessing techniques, including power transformations, scaling, and trend-cycle decomposition. Moreover, ensemble methods, like weighted blending and stacking, were used to improve accuracy. Experimental results in- dicate that SARIMA was the best individual model, but ensemble with Prophet and Random Forest further improved forecast performance. Neural network models underperformed poten- tially due to challenges in optimizing their architectures. Future research intends to explore multivariate and structural models, as well as advanced neural architectures, to enhance pre- dictive accuracy.

Suggested Citation

  • Shakhzod Abdullaevich Makhmudov, 2025. "Forecasting Banking System Liquidity Using Payment System Data in Uzbekistan," IHEID Working Papers 05-2025, Economics Section, The Graduate Institute of International Studies, revised 17 Feb 2025.
  • Handle: RePEc:gii:giihei:heidwp05-2025
    as

    Download full text from publisher

    File URL: http://repec.graduateinstitute.ch/pdfs/Working_papers/HEIDWP05-2025.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Burger & Bernhard Klar & Alfred Muller & Gero Schindlmayr, 2004. "A spot market model for pricing derivatives in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 109-122.
    2. Jacinta Chan Phooi M’ng & Mohammadali Mehralizadeh, 2016. "Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-29, June.
    3. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    4. Philippe C. Besse & Herve Cardot & David B. Stephenson, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687, December.
    5. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    6. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    7. Hans Weytjens & Enrico Lohmann & Martin Kleinsteuber, 2021. "Cash flow prediction: MLP and LSTM compared to ARIMA and Prophet," Electronic Commerce Research, Springer, vol. 21(2), pages 371-391, June.
    8. Zhiqiang Guo & Huaiqing Wang & Quan Liu & Jie Yang, 2014. "A Feature Fusion Based Forecasting Model for Financial Time Series," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-13, June.
    9. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    3. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Linwei Li & Paul-Amaury Matt & Christian Heumann, 2022. "Forecasting foreign exchange rates with regression networks tuned by Bayesian optimization," Papers 2204.12914, arXiv.org, revised May 2022.
    6. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    7. Masud Alam, 2024. "Output, employment, and price effects of U.S. narrative tax changes: a factor-augmented vector autoregression approach," Empirical Economics, Springer, vol. 67(4), pages 1421-1471, October.
    8. Zhang, Junting & Liu, Haifei & Bai, Wei & Li, Xiaojing, 2024. "A hybrid approach of wavelet transform, ARIMA and LSTM model for the share price index futures forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    9. Mahla Nikou & Gholamreza Mansourfar & Jamshid Bagherzadeh, 2019. "Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(4), pages 164-174, October.
    10. Tommaso Proietti & Alberto Musso & Thomas Westermann, 2007. "Estimating potential output and the output gap for the euro area: a model-based production function approach," Empirical Economics, Springer, vol. 33(1), pages 85-113, July.
    11. Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised Feb 2025.
    12. Abberger, Klaus & Graff, Michael & Siliverstovs, Boriss & Sturm, Jan-Egbert, 2018. "Using rule-based updating procedures to improve the performance of composite indicators," Economic Modelling, Elsevier, vol. 68(C), pages 127-144.
    13. Raul Ibarra & Luis M. Gomez-Zamudio, 2017. "Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico," Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 173-203, April.
    14. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    15. Michael Graff & Klaus Abberger & Boriss Siliverstovs & Jan-Egbert Sturm, 2014. "Das neue KOF Konjunkturbarometer – Version 2014," KOF Analysen, KOF Swiss Economic Institute, ETH Zurich, vol. 8(1), pages 91-106, March.
    16. Ibarra-Ramírez Raúl, 2010. "Forecasting Inflation in Mexico Using Factor Models: Do Disaggregated CPI Data Improve Forecast Accuracy?," Working Papers 2010-01, Banco de México.
    17. M. Sylvina Porras-Arena & Mauricio A. Suárez Cal, 2021. "What’s behind Okun’s law? A multiple equation approach to the Uruguayan labour market," Documentos de Trabajo (working papers) 21-30, Instituto de Economía - IECON.
    18. Juan José Echavarría & Andrés González, 2012. "Choques internacionales reales y financieros y su impacto sobre la economía colombiana," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(69), pages 14-66, December.
    19. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    20. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.

    More about this item

    Keywords

    Monetary Policy; Time-Series Models; Model Evaluation and Selection; Forecasting and Other Model Applications; Payment Systems;
    All these keywords.

    JEL classification:

    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gii:giihei:heidwp05-2025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dorina Dobre (email available below). General contact details of provider: https://edirc.repec.org/data/ieheich.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.