IDEAS home Printed from https://ideas.repec.org/p/gat/wpaper/1013.html
   My bibliography  Save this paper

Dépendance entre risques extrêmes : Application aux Hedge Funds

Author

Listed:
  • Ranoua Bouchouicha

    (Université de Lyon, Lyon, F-69003, France; CNRS, GATE Lyon St Etienne, UMR 5824, 93, chemin des Mouilles, Ecully, F-69130, France; ENS-LSH, Lyon, France)

Abstract

Compte tenu de l'importance de l'étude de la dépendance extrême, nous avons essayé de déterminer l'approche qui semble être la meilleure pour l'étude des risques extrêmes. Pour atteindre ce but, nous avons mené une étude du coefficient de dépendance de queue pour les trois approche : paramétriques, semi-paramétriques et non paramétriques. Dans l'étude empirique, nous estimons le coefficient de dépendance de queue dans le cadre de ces différentes méthodes, d'abord par une implémentation numérique, ensuite par l’étude de dépendance entre le Hedge Fund Credit Suisse / Tremont Market Neutral et le S & P500 afin d’évaluer le degré de dépendance entre ces deux actifs, qui sont connus pour être décorrélés. Il existe peu d'études qui ont travaillé sur la dépendance non linéaire entre les Hedge Funds et l'indice du marché. L'article de Denuit et Scaillet (2004) traite d'un cas général de la détection de la dépendance du quadrant positif (PQD) entre les HFR et CSFB / Tremont Market Neutral et l’indice S & P 500 index. Le résultat de ce papier est pertinent car on trouve que le niveau de dépendance au niveau des pertes avec l'indice de marché est moins important que celui au niveau des gains, alors que les Hedge Funds l'indice du marché sont généralement considérés comme décorrélés.

Suggested Citation

  • Ranoua Bouchouicha, 2010. "Dépendance entre risques extrêmes : Application aux Hedge Funds," Working Papers 1013, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
  • Handle: RePEc:gat:wpaper:1013
    as

    Download full text from publisher

    File URL: ftp://ftp.gate.cnrs.fr/RePEc/2010/1013.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafael Schmidt & Ulrich Stadtmüller, 2006. "Non‐parametric Estimation of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 307-335, June.
    2. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    3. Karolyi, G Andrew & Stulz, Rene M, 1996. "Why Do Markets Move Together? An Investigation of U.S.-Japan Stock Return Comovements," Journal of Finance, American Finance Association, vol. 51(3), pages 951-986, July.
    4. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    5. P. Bortot & S. Coles & J. Tawn, 2000. "The multivariate Gaussian tail model: an application to oceanographic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 31-049.
    6. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    7. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    8. Yannick Malevergne & Didier Sornette, 2004. "How to account for extreme co-movements between individual stocks and the market," Post-Print hal-02312885, HAL.
    9. Yannick Malevergne & Didier Sornette, 2002. "Minimizing extremes," Post-Print hal-02312889, HAL.
    10. DENUIT, Michel & SAILLET, Olivier, 2001. "Nonparametric Tests for Positive Quadrant Dependence," LIDAM Discussion Papers IRES 2001009, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES), revised 01 Apr 2001.
    11. Michel Denuit, 2004. "Nonparametric Tests for Positive Quadrant Dependence," Journal of Financial Econometrics, Oxford University Press, vol. 2(3), pages 422-450.
    12. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shegorika Rajwani & Dilip Kumar, 2016. "Asymmetric Dynamic Conditional Correlation Approach to Financial Contagion: A Study of Asian Markets," Global Business Review, International Management Institute, vol. 17(6), pages 1339-1356, December.
    2. Aguilar, Mike & Hill, Jonathan B., 2015. "Robust score and portmanteau tests of volatility spillover," Journal of Econometrics, Elsevier, vol. 184(1), pages 37-61.
    3. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    4. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    5. Y. Malevergne & D. Sornette, 2003. "VaR-Efficient Portfolios for a Class of Super- and Sub-Exponentially Decaying Assets Return Distributions," Papers physics/0301009, arXiv.org.
    6. Maarten R C van Oordt & Chen Zhou, 2019. "Estimating Systematic Risk under Extremely Adverse Market Conditions," Journal of Financial Econometrics, Oxford University Press, vol. 17(3), pages 432-461.
    7. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    8. Cotter, John & Longin, Francois, 2006. "Implied correlation from VaR," MPRA Paper 3506, University Library of Munich, Germany.
    9. Reboredo, Juan C., 2012. "Do food and oil prices co-move?," Energy Policy, Elsevier, vol. 49(C), pages 456-467.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    11. Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
    12. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    13. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    14. Martin Hoesli & Kustrim Reka, 2013. "Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 47(1), pages 1-35, July.
    15. Stefan Erdorf & Nicolas Heinrichs, 2011. "Co-movement of revenue: structural changes in the business cycle," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 25(4), pages 411-433, December.
    16. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    17. de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.
    18. Reboredo, Juan C., 2011. "How do crude oil prices co-move?: A copula approach," Energy Economics, Elsevier, vol. 33(5), pages 948-955, September.
    19. Alexander, Gordon J. & Baptista, Alexandre M., 2009. "Stress testing by financial intermediaries: Implications for portfolio selection and asset pricing," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 65-92, January.
    20. Francesca Carrieri & Vihang Errunza & Sergei Sarkissian, 2004. "Industry Risk and Market Integration," Management Science, INFORMS, vol. 50(2), pages 207-221, February.

    More about this item

    Keywords

    tail dependence; Copulas; parametric approach; non parametric approach; semiparametric approach;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gat:wpaper:1013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nelly Wirth (email available below). General contact details of provider: https://edirc.repec.org/data/gateefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.