IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/93609.html
   My bibliography  Save this paper

Reconsidering the Fed's Inflation Forecasting Advantage

Author

Abstract

Previous studies show the Fed has a forecast advantage over the private sector for inflation, either because it devotes more resources to forecasting or because it has an informational advantage. We evaluate the Fed's forecast advantage to determine how much of it results from the Fed's knowledge of future monetary policy. We develop two tests -- an instrumental variable encompassing test and a path-dependent encompassing test -- to equalize the Fed's information set with the private sector's. We find that Fed forecasts do not encompass those of the private sector when the latter has knowledge of the future of monetary policy. Further, we find that between 20 and 30 percent of the difference between the Fed's and the private sector's mean squared forecast error can be explained by monetary policy.

Suggested Citation

  • Amy Y. Guisinger & Michael W. McCracken & Michael T. Owyang, 2022. "Reconsidering the Fed's Inflation Forecasting Advantage," Working Papers 2022-001, Federal Reserve Bank of St. Louis, revised 23 Oct 2023.
  • Handle: RePEc:fip:fedlwp:93609
    DOI: 10.20955/wp.2022.001
    as

    Download full text from publisher

    File URL: https://s3.amazonaws.com/real.stlouisfed.org/wp/2022/2022-001.pdf
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.20955/wp.2022.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    2. El-Shagi, Makram & Giesen, Sebastian & Jung, Alexander, 2016. "Revisiting the relative forecast performances of Fed staff and private forecasters: A dynamic approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 313-323.
    3. Jing Cynthia Wu & Fan Dora Xia, 2016. "Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 253-291, March.
    4. Andrew Patton & Allan Timmermann, 2012. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17.
    5. Maik H. Wolters, 2015. "Evaluating Point and Density Forecasts of DSGE Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
    6. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    7. Tom Stark, 2010. "Realistic evaluation of real-time forecasts in the Survey of Professional Forecasters," Research Rap Special Report, Federal Reserve Bank of Philadelphia, issue May.
    8. Marek Jarociński & Peter Karadi, 2020. "Deconstructing Monetary Policy Surprises—The Role of Information Shocks," American Economic Journal: Macroeconomics, American Economic Association, vol. 12(2), pages 1-43, April.
    9. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    10. Lakdawala, Aeimit & Schaffer, Matthew, 2019. "Federal reserve private information and the stock market," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 34-49.
    11. De Pooter, Michiel & Martin, Robert F. & Pruitt, Seth, 2018. "The Liquidity Effects of Official Bond Market Intervention," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(1), pages 243-268, February.
    12. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
    13. Fair, Ray C & Shiller, Robert J, 1989. "The Informational Context of Ex Ante Forecasts," The Review of Economics and Statistics, MIT Press, vol. 71(2), pages 325-331, May.
    14. Julieta Caunedo & Riccardo Dicecio & Ivana Komunjer & Michael T. Owyang, 2020. "Asymmetry, Complementarities, and State Dependence in Federal Reserve Forecasts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(1), pages 205-228, February.
    15. Michael D. Bauer & Glenn D. Rudebusch, 2014. "The Signaling Channel for Federal Reserve Bond Purchases," International Journal of Central Banking, International Journal of Central Banking, vol. 10(3), pages 233-289, September.
    16. Clements, Michael P., 2019. "Do forecasters target first or later releases of national accounts data?," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1240-1249.
    17. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    18. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
    19. Swanson, Eric T., 2006. "Have Increases in Federal Reserve Transparency Improved Private Sector Interest Rate Forecasts?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(3), pages 791-819, April.
    20. Faust, Jon & Wright, Jonathan H., 2008. "Efficient forecast tests for conditional policy forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 293-303, October.
    21. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Hubert, 2015. "Do Central Bank Forecasts Influence Private Agents? Forecasting Performance versus Signals," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(4), pages 771-789, June.
    2. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    3. repec:spo:wpecon:info:hdl:2441/f4rshpf3v1umfa09lat09b1bg is not listed on IDEAS
    4. João Valle e Azevedo, 2011. "Rational vs. professional forecasts," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    5. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    6. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    7. repec:hal:wpspec:info:hdl:2441/f4rshpf3v1umfa09lat09b1bg is not listed on IDEAS
    8. repec:hal:spmain:info:hdl:2441/f4rshpf3v1umfa09lat09b1bg is not listed on IDEAS
    9. repec:spo:wpmain:info:hdl:2441/f4rshpf3v1umfa09lat09b1bg is not listed on IDEAS
    10. Berge, Travis J. & Chang, Andrew C. & Sinha, Nitish R., 2019. "Evaluating the conditionality of judgmental forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1627-1635.
    11. Paul Hubert, 2015. "Revisiting the Greenbook’s relative forecasting performance," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(1), pages 151-179.
    12. Arai, Natsuki, 2020. "Investigating the inefficiency of the CBO’s budgetary projections," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1290-1300.
    13. repec:hal:spmain:info:hdl:2441/35kgubh40v9gfpnuruelqjnptb is not listed on IDEAS
    14. repec:spo:wpmain:info:hdl:2441/35kgubh40v9gfpnuruelqjnptb is not listed on IDEAS
    15. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
    16. Paul Hubert, 2010. "Monetary policy, imperfect information and the expectations channel [Politique monétaire,information imparfaite et canal des anticipations]," SciencePo Working papers Main tel-04095385, HAL.
    17. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    18. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    19. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    20. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
    21. Michael D. Bauer & Eric T. Swanson, 2023. "A Reassessment of Monetary Policy Surprises and High-Frequency Identification," NBER Macroeconomics Annual, University of Chicago Press, vol. 37(1), pages 87-155.
    22. Ganics, Gergely & Odendahl, Florens, 2021. "Bayesian VAR forecasts, survey information, and structural change in the euro area," International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
    23. Arai, Natsuki, 2014. "Using forecast evaluation to improve the accuracy of the Greenbook forecast," International Journal of Forecasting, Elsevier, vol. 30(1), pages 12-19.
    24. Antonello D'Agostino & Domenico Giannone & Paolo Surico, 2005. "(Un)Predictability and Macroeconomic Stability," Macroeconomics 0510024, University Library of Munich, Germany.
    25. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    26. Liu, Dandan & Smith, Julie K., 2014. "Inflation forecasts and core inflation measures: Where is the information on future inflation?," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(1), pages 133-137.

    More about this item

    Keywords

    conditional encompassing; eurodollar futures; Fed information;
    All these keywords.

    JEL classification:

    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:93609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Scott St. Louis (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.