Explaining Machine Learning by Bootstrapping Partial Dependence Functions and Shapley Values
Author
Abstract
Suggested Citation
DOI: 10.18651/RWP2021-12
Download full text from publisher
References listed on IDEAS
- Limsombunchai, Visit, 2004. "House Price Prediction: Hedonic Price Model vs. Artificial Neural Network," 2004 Conference, June 25-26, 2004, Blenheim, New Zealand 97781, New Zealand Agricultural and Resource Economics Society.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Marianne Bertrand & Sendhil Mullainathan, 2004.
"Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination,"
American Economic Review, American Economic Association, vol. 94(4), pages 991-1013, September.
- Marianne Bertrand & Sendhil Mullainathan, 2003. "Are emily and greg more employable than lakisha and jamal? A field experiment on labor market discrimination," Natural Field Experiments 00216, The Field Experiments Website.
- Marianne Bertrand & Sendhil Mullainathan, 2003. "Are Emily and Greg More Employable than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination," NBER Working Papers 9873, National Bureau of Economic Research, Inc.
- Daniel P. McMillen & Christian L. Redfearn, 2010. "Estimation And Hypothesis Testing For Nonparametric Hedonic House Price Functions," Journal of Regional Science, Wiley Blackwell, vol. 50(3), pages 712-733, August.
- Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
- Michael J. Hanmer & Kerem Ozan Kalkan, 2013. "Behind the Curve: Clarifying the Best Approach to Calculating Predicted Probabilities and Marginal Effects from Limited Dependent Variable Models," American Journal of Political Science, John Wiley & Sons, vol. 57(1), pages 263-277, January.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- W.J. McCluskey & M. McCord & P.T. Davis & M. Haran & D. McIlhatton, 2013. "Prediction accuracy in mass appraisal: a comparison of modern approaches," Journal of Property Research, Taylor & Francis Journals, vol. 30(4), pages 239-265, December.
- Joachim Zietz & Emily Zietz & G. Sirmans, 2008.
"Determinants of House Prices: A Quantile Regression Approach,"
The Journal of Real Estate Finance and Economics, Springer, vol. 37(4), pages 317-333, November.
- Joachim Zietz & Emily N. Zietz & G. Stacy Sirmans., 2007. "Determinants of House Prices: A Quantile Regression Approach," Working Papers 200706, Middle Tennessee State University, Department of Economics and Finance.
- Qingyuan Zhao & Trevor Hastie, 2021. "Causal Interpretations of Black-Box Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 272-281, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- repec:fip:fedkrr:96511 is not listed on IDEAS
- Thomas R. Cook & Nathan M. Palmer, 2023. "Understanding Models and Model Bias with Gaussian Processes," Research Working Paper RWP 23-07, Federal Reserve Bank of Kansas City.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jose Torres-Pruñonosa & Pablo GarcÃa-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021.
"Is It Possible to Forecast the Price of Bitcoin?,"
Forecasting, MDPI, vol. 3(2), pages 1-44, May.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-04250269, HAL.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Post-Print halshs-04250269, HAL.
- Islam, Towhidul & Meade, Nigel & Carson, Richard T. & Louviere, Jordan J. & Wang, Juan, 2022. "The usefulness of socio-demographic variables in predicting purchase decisions: Evidence from machine learning procedures," Journal of Business Research, Elsevier, vol. 151(C), pages 324-338.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ay, Jean-Sauveur & Le Gallo, Julie, 2021.
"The Signaling Values of Nested Wine Names,"
Working Papers
321851, American Association of Wine Economists.
- Jean-Sauveur Ay & Julie Le Gallo, 2021. "The signaling value of nested wine names," Post-Print hal-03268014, HAL.
- Chen, Ruoyu & Jiang, Hanchen & Quintero, Luis E., 2023.
"Measuring the value of rent stabilization and understanding its implications for racial inequality: Evidence from New York City,"
Regional Science and Urban Economics, Elsevier, vol. 103(C).
- Chen, Ruoyu & Jiang, Hanchen & Quintero, Luis E., 2022. "Measuring the Value of Rent Stabilization and Understanding its Implications for Racial Inequality: Evidence from New York City," GLO Discussion Paper Series 1102, Global Labor Organization (GLO).
- Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
- Ballestar, María Teresa & Mir, Miguel Cuerdo & Pedrera, Luis Miguel Doncel & Sainz, Jorge, 2024. "Effectiveness of tutoring at school: A machine learning evaluation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
- Daniel Levy & Tamir Mayer & Alon Raviv, 2020.
"Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers,"
Working Papers
hal-02488796, HAL.
- Daniel Levy & Tamir Mayer & Alon Raviv, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," Working Papers 2020-01, Bar-Ilan University, Department of Economics.
- Levy, Daniel & Mayer, Tamir & Raviv, Alon, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," MPRA Paper 98785, University Library of Munich, Germany.
- Daniel Levy & Tamir Mayer & Alon Raviv, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," Working Paper series 20-05, Rimini Centre for Economic Analysis.
- Levy, Daniel & Mayer, Tamir & Raviv, Alon, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," EconStor Preprints 214194, ZBW - Leibniz Information Centre for Economics.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," SciencePo Working papers Main halshs-03673240, HAL.
- Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
- Arenas, Andreu & Calsamiglia, Caterina, 2022.
"Gender Differences in High-Stakes Performance and College Admission Policies,"
IZA Discussion Papers
15550, Institute of Labor Economics (IZA).
- Andreu Arenas & Caterina Calsamiglia, 2023. "Gender Differences in High-Stakes Performance and College Admission Policies," Working Papers 2023/13, Institut d'Economia de Barcelona (IEB).
- Tsang, Andrew, 2021.
"Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy,"
MPRA Paper
110703, University Library of Munich, Germany.
- Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," WiSo-HH Working Paper Series 62, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Daniel Goller, 2023.
"Analysing a built-in advantage in asymmetric darts contests using causal machine learning,"
Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
- Daniel Goller, 2020. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Papers 2008.07165, arXiv.org.
- Goller, Daniel, 2020. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Economics Working Paper Series 2013, University of St. Gallen, School of Economics and Political Science.
- Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
- Hannes Wallimann & Silvio Sticher, 2023. "On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement," Papers 2304.11888, arXiv.org.
- Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
- Jesus Fernandez-Villaverde, 2020. "Simple Rules for a Complex World with Arti?cial Intelligence," PIER Working Paper Archive 20-010, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
More about this item
Keywords
Machine learning; Artificial intelligence; Explainable machine learning; Shapley values; Model interpretation;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-02-21 (Big Data)
- NEP-CMP-2022-02-21 (Computational Economics)
- NEP-ECM-2022-02-21 (Econometrics)
- NEP-GTH-2022-02-21 (Game Theory)
- NEP-ORE-2022-02-21 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedkrw:93596. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zach Kastens (email available below). General contact details of provider: https://edirc.repec.org/data/frbkcus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.