Sample Bias Related to Household Role
Author
Abstract
Suggested Citation
DOI: 10.29338/wp2021-09
Download full text from publisher
References listed on IDEAS
- Kott, Phillip S. & Chang, Ted, 2010. "Using Calibration Weighting to Adjust for Nonignorable Unit Nonresponse," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1265-1275.
- Park, David K. & Gelman, Andrew & Bafumi, Joseph, 2004. "Bayesian Multilevel Estimation with Poststratification: State-Level Estimates from National Polls," Political Analysis, Cambridge University Press, vol. 12(4), pages 375-385.
- repec:mpr:mprres:4780 is not listed on IDEAS
- repec:mpr:mprres:4937 is not listed on IDEAS
- Wang, Wei & Rothschild, David & Goel, Sharad & Gelman, Andrew, 2015. "Forecasting elections with non-representative polls," International Journal of Forecasting, Elsevier, vol. 31(3), pages 980-991.
- Qin J. & Leung D. & Shao J., 2002. "Estimation With Survey Data Under Nonignorable Nonresponse or Informative Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 193-200, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Temporão, Mickael & Dufresne, Yannick & Savoie, Justin & Linden, Clifton van der, 2019. "Crowdsourcing the vote: New horizons in citizen forecasting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 1-10.
- Yonatan Ben-Shalom & Ignacio Martinez & Mariel Finucane, "undated". "Risk of Workforce Exit Due to Disability: State Differences in 2003–2016," Mathematica Policy Research Reports 8aed03744a06419dbda68be8c, Mathematica Policy Research.
- Jiwei Zhao & Jun Shao, 2015. "Semiparametric Pseudo-Likelihoods in Generalized Linear Models With Nonignorable Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1577-1590, December.
- Guo, Xu & Song, Lianlian & Fang, Yun & Zhu, Lixing, 2019. "Model checking for general linear regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 1-12.
- Skinner, Benjamin T. & Doyle, William R., 2024. "Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification," Economics of Education Review, Elsevier, vol. 99(C).
- Laura C. Dawkins & Daniel B. Williamson & Stewart W. Barr & Sally R. Lampkin, 2020. "‘What drives commuter behaviour?': a Bayesian clustering approach for understanding opposing behaviours in social surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 251-280, January.
- Cerina, Roberto & Duch, Raymond, 2020. "Measuring public opinion via digital footprints," International Journal of Forecasting, Elsevier, vol. 36(3), pages 987-1002.
- Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2019. "Calibration estimation of semiparametric copula models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 85-109.
- Montalvo, José G. & Papaspiliopoulos, Omiros & Stumpf-Fétizon, Timothée, 2019. "Bayesian forecasting of electoral outcomes with new parties’ competition," European Journal of Political Economy, Elsevier, vol. 59(C), pages 52-70.
- Bruch, Christian & Felderer, Barbara, 2024. "An Approximation of Joint Distributions of Weighting Variables Using a Pseudo Population Approach," OSF Preprints pg2wt, Center for Open Science.
- José Garcia Montalvo & Omiros Papaspiliopoulos & Timothée Stumpf-Fétizon, 2018. "Bayesian forecasting of electoral outcomes with new parties' competition," Economics Working Papers 1624, Department of Economics and Business, Universitat Pompeu Fabra.
- José García-Montalvo & Omiros Papaspiliopoulos & Timothée Stumpf-Fétizon, 2018. "Bayesian Forecasting of Electoral Outcomes with new Parties' Competition," Working Papers 1065, Barcelona School of Economics.
- Takahiro Hoshino & Yuya Shimizu, 2019. "Doubly Robust-type Estimation of Population Moments and Parameters in Biased Sampling," Keio-IES Discussion Paper Series 2019-006, Institute for Economics Studies, Keio University.
- Wang, Wei & Rothschild, David & Goel, Sharad & Gelman, Andrew, 2015. "Forecasting elections with non-representative polls," International Journal of Forecasting, Elsevier, vol. 31(3), pages 980-991.
- Mark Richard & Jan Vecer, 2021. "Efficiency Testing of Prediction Markets: Martingale Approach, Likelihood Ratio and Bayes Factor Analysis," Risks, MDPI, vol. 9(2), pages 1-20, February.
- Carl-Erik Särndal & Imbi Traat & Kaur Lumiste, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
- Dimiter Toshkov & Elitsa Kortenska, 2015. "Does Immigration Undermine Public Support for Integration in the European Union?," Journal of Common Market Studies, Wiley Blackwell, vol. 53(4), pages 910-925, July.
- Sakshaug Joseph W. & Wiśniowski Arkadiusz & Ruiz Diego Andres Perez & Blom Annelies G., 2019. "Supplementing Small Probability Samples with Nonprobability Samples: A Bayesian Approach," Journal of Official Statistics, Sciendo, vol. 35(3), pages 653-681, September.
- Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
More about this item
Keywords
survey error; Bayesian interference; Survey of Consumer Payment Choice; bootstrap; household economics;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
- D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CWA-2021-03-15 (Central and Western Asia)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedawp:90079. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rob Sarwark (email available below). General contact details of provider: https://edirc.repec.org/data/frbatus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.