IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2004.58.html
   My bibliography  Save this paper

Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

Author

Listed:
  • Bob van der Zwaan

    (Energy Research Centre of the Netherlands (ECN), Policy Studies Department and Harvard University, John F. Kennedy School of Government)

  • Koen Smekens

    (Energy Research Centre of the Netherlands (ECN), Policy Studies Department)

Abstract

Geological carbon sequestration seems one of the promising options to address, in the near term, the global problem of climate change, since carbon sequestration technologies are in principle available today and their costs are expected to be affordable. Whereas extensive technological and economic feasibility studies rightly point out the large potential of this ‘clean fossil fuel’ option, relatively little attention has been paid so far to the detrimental environmental externalities that the sequestering of CO2 underground could entail. This paper assesses what the relevance might be of including these external effects in long-term energy planning and scenario analyses. Our main conclusion is that, while these effects are generally likely to be relatively small, carbon sequestration externalities do matter and influence the nature of future world energy supply and consumption. More importantly, since geological carbon storage (depending on the method employed) may in some cases have substantial external impacts, in terms of both environmental damage and health risks, it is recommended that extensive studies are performed to quantify these effects. This article addresses three main questions: (i) What may energy supply look like if one accounts for large-scale CO2 sequestration in the construction of long-term energy and climate change scenarios; (ii) Suppose one hypothesizes a quantification of the external environmental costs of CO2 sequestration, how do then these supposed costs affect the evolution of the energy system during the 21st century; (iii) Does it matter for these scenarios whether carbon sequestration damage costs are charged directly to consumers or, instead, to electricity producers?

Suggested Citation

  • Bob van der Zwaan & Koen Smekens, 2004. "Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios," Working Papers 2004.58, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2004.58
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2004-058.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minh Ha-Duong & David Keith, 2003. "Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs," Post-Print halshs-00003927, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rehdanz, Katrin & Tol, Richard S.J. & Wetzel, Patrick, 2006. "Ocean carbon sinks and international climate policy," Energy Policy, Elsevier, vol. 34(18), pages 3516-3526, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Bosetti & Laurent Gilotte, 2005. "Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?," Working Papers 2005.86, Fondazione Eni Enrico Mattei.
    2. Narita, Daiju & Klepper, Gernot, 2015. "Economic incentives for carbon dioxide storage under uncertainty: A real options analysis," Kiel Working Papers 2002, Kiel Institute for the World Economy (IfW Kiel).
    3. Qian Wu & Qianguo Lin & Qiang Yang & Yang Li, 2022. "An optimization‐based CCUS source‐sink matching model for dynamic planning of CCUS clusters," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(4), pages 433-453, August.
    4. Bob van der Zwaan & Reyer Gerlagh, 2016. "Offshore CCS and ocean acidification: a global long-term probabilistic cost-benefit analysis of climate change mitigation," Climatic Change, Springer, vol. 137(1), pages 157-170, July.
    5. Sven Bode & Martina Jung, 2006. "Carbon dioxide capture and storage—liability for non-permanence under the UNFCCC," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 6(2), pages 173-186, June.
    6. Bandza, Alexander J. & Vajjhala, Shalini P., 2010. "Long-Term Risks and Short-Term Regulations: Modeling the Transition from Enhanced Oil Recovery to Geologic Carbon Sequestration," RFF Working Paper Series dp-08-29-rev, Resources for the Future.
    7. Hang Deng & Jeffrey M. Bielicki & Michael Oppenheimer & Jeffrey P. Fitts & Catherine A. Peters, 2017. "Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation," Climatic Change, Springer, vol. 144(2), pages 151-163, September.
    8. Steinkraus, Arne, 2015. "Coal and Gas - From Cradle to Grave with Carbon Capture and Storage," Economics Department Working Paper Series 14, Technische Universität Braunschweig, Economics Department.
    9. Nadine Heitmann & Christine Bertram & Daiju Narita, 2012. "Embedding CCS infrastructure into the European electricity system: a policy coordination problem," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 669-686, August.
    10. Vajjhala, Shalini & Gode, Jenny & Torvanger, Asbjørn, 2007. "An International Regulatory Framework for Risk Governance of Carbon Capture and Storage," RFF Working Paper Series dp-07-13-rev, Resources for the Future.
    11. Minh Ha-Duong & Rodica Loisel, 2009. "Zero is the only acceptable leakage rate for geologically stored CO2: an editorial comment," Post-Print hal-00348128, HAL.
    12. Rehdanz, Katrin & Tol, Richard S.J. & Wetzel, Patrick, 2006. "Ocean carbon sinks and international climate policy," Energy Policy, Elsevier, vol. 34(18), pages 3516-3526, December.
    13. Bob van der Zwaan & Reyer Gerlagh, 2008. "The Economics of Geological CO2 Storage and Leakage," Working Papers 2008.10, Fondazione Eni Enrico Mattei.
    14. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    15. Niko Jaakkola, 2012. "Monopolistic sequestration of European carbon emissions," OxCarre Working Papers 098, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    16. Takayuki Takeshita & Kenji Yamaji, 2006. "Potential contribution of coal to the future global energy system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 8(1), pages 55-87, December.
    17. Duan, Hong-Bo & Fan, Ying & Zhu, Lei, 2013. "What’s the most cost-effective policy of CO2 targeted reduction: An application of aggregated economic technological model with CCS?," Applied Energy, Elsevier, vol. 112(C), pages 866-875.
    18. Teng, Fei & Tondeur, Daniel, 2007. "Efficiency of Carbon storage with leakage: Physical and economical approaches," Energy, Elsevier, vol. 32(4), pages 540-548.
    19. Narita, Daiju, 2008. "The use of CCS in global carbon management: simulation with the DICE model," Kiel Working Papers 1440, Kiel Institute for the World Economy (IfW Kiel).
    20. Minh Ha-Duong & Rodica Loisel, 2011. "Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050," Post-Print halshs-00487175, HAL.

    More about this item

    Keywords

    Geological carbon storage; External costs; Energy scenarios;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2004.58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.