IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00487175.html
   My bibliography  Save this paper

Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050

Author

Listed:
  • Minh Ha-Duong

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

  • Rodica Loisel

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

Abstract

This study estimates the human cost of failures in the CCS industry in 2050, using the actuarial approach. The range of expected fatalities is assessed integrating all steps of the CCS chain: additional coal production, coal transportation, carbon capture, transport, injection and storage, based on empirical evidence from technical or social analogues. The main finding is that a few hundred fatalities per year should be expected if the technology is used to avoid emitting 1 GtC yr-1 in 2050 at baseload coal power plants. The large majority of fatalities are attributable to mining and delivering more coal. These risks compare to today's industrial hazards: technical, knowable and occupational dangers for which there are socially acceptable non-zero risk levels. Some contemporary European societies tolerate about one fatality per thousand year around industrial installations. If storage sites perform like that, then expected fatalities per year due to leakage should have a minor contribution in the total expected fatalities per year: less than one. But to statistically validate such a safety level, reliability theory and the technology roadmap suggest that CO2 storage demonstration projects over the next 20 years have to cause exactly zero fatality.

Suggested Citation

  • Minh Ha-Duong & Rodica Loisel, 2011. "Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050," Post-Print halshs-00487175, HAL.
  • Handle: RePEc:hal:journl:halshs-00487175
    DOI: 10.1016/j.ijggc.2011.07.004
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00487175v3
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00487175v3/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ijggc.2011.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Burgherr, Peter & Hirschberg, Stefan, 2008. "Severe accident risks in fossil energy chains: A comparative analysis," Energy, Elsevier, vol. 33(4), pages 538-553.
    2. Minh Ha-Duong & David Keith, 2003. "Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs," Post-Print halshs-00003927, HAL.
    3. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    4. Foxon, Timothy J., 2013. "Transition pathways for a UK low carbon electricity future," Energy Policy, Elsevier, vol. 52(C), pages 10-24.
    5. Minh Ha-Duong & Rodica Loisel, 2009. "Zero is the only acceptable leakage rate for geologically stored CO2: an editorial comment," Post-Print hal-00348128, HAL.
    6. Felder, Frank A., 2009. "A critical assessment of energy accident studies," Energy Policy, Elsevier, vol. 37(12), pages 5744-5751, December.
    7. Ortwin Renn, 2004. "Perception of Risks," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 29(1), pages 102-114, January.
    8. Sovacool, Benjamin K., 2008. "The costs of failure: A preliminary assessment of major energy accidents, 1907-2007," Energy Policy, Elsevier, vol. 36(5), pages 1802-1820, May.
    9. Holloway, S. & Pearce, J.M. & Hards, V.L. & Ohsumi, T. & Gale, J., 2007. "Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide," Energy, Elsevier, vol. 32(7), pages 1194-1201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:sae:envval:v:24:y:2015:i:4:p:465-482 is not listed on IDEAS
    2. Minh Ha-Duong & an Ha Truong & Hong Nam Nguyen & Hoang Anh Nguyen Trinh, 2016. "Synthesis Report on Socio-environmental Impacts of Coal and Coal-fired Power Plants in Vietnam," CIRED Working Papers hal-01441680, HAL.
    3. John Michael Humphries Choptiany & Ron Pelot & Kate Sherren, 2014. "An Interdisciplinary Perspective on Carbon Capture and Storage Assessment Methods," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 445-458, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    2. Boccard, Nicolas, 2018. "Safety along the energy chain," Energy, Elsevier, vol. 150(C), pages 1018-1030.
    3. Scholtens, Bert & Boersen, Arieke, 2011. "Stocks and energy shocks: The impact of energy accidents on stock market value," Energy, Elsevier, vol. 36(3), pages 1698-1702.
    4. Sovacool, Benjamin K. & Kryman, Matthew & Laine, Emily, 2015. "Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents," Energy, Elsevier, vol. 90(P2), pages 2016-2027.
    5. Hirschberg, Stefan & Bauer, Christian & Burgherr, Peter & Cazzoli, Eric & Heck, Thomas & Spada, Matteo & Treyer, Karin, 2016. "Health effects of technologies for power generation: Contributions from normal operation, severe accidents and terrorist threat," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 373-387.
    6. Siler-Evans, Kyle & Hanson, Alex & Sunday, Cecily & Leonard, Nathan & Tumminello, Michele, 2014. "Analysis of pipeline accidents in the United States from 1968 to 2009," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(4), pages 257-269.
    7. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    8. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    9. Liu, Jiming & Shi, Benyun, 2012. "Towards understanding the robustness of energy distribution networks based on macroscopic and microscopic evaluations," Energy Policy, Elsevier, vol. 49(C), pages 318-327.
    10. Flávia de Souza Costa Neves Cavazotte & Cristiano José Pereira Duarte & Anna Maria Calvão Gobbo, 2013. "Authentic leader, safe work: the influence of leadership on safety performance," Brazilian Business Review, Fucape Business School, vol. 10(2), pages 95-119, June.
    11. Huhtala, Anni & Remes, Piia, 2017. "Quantifying the social costs of nuclear energy: Perceived risk of accident at nuclear power plants," Energy Policy, Elsevier, vol. 105(C), pages 320-331.
    12. Burgherr, Peter & Eckle, Petrissa & Hirschberg, Stefan, 2012. "Comparative assessment of severe accident risks in the coal, oil and natural gas chains," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 97-103.
    13. Marco Cinelli & Matteo Spada & Miłosz Kadziński & Grzegorz Miebs & Peter Burgherr, 2019. "Advancing Hazard Assessment of Energy Accidents in the Natural Gas Sector with Rough Set Theory and Decision Rules," Energies, MDPI, vol. 12(21), pages 1-17, November.
    14. Huhtala, Anni & Remes, Piia, 2016. "Dimming Hopes for Nuclear Power: Quantifying the Social Costs of Perceptions of Risks," Working Papers 57, VATT Institute for Economic Research.
    15. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
    16. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    17. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    18. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    19. Ritter, Hendrik & Zimmermann, Karl, 2019. "Cap-and-Trade Policy vs. Carbon Taxation: Of Leakage and Linkage," EconStor Preprints 197796, ZBW - Leibniz Information Centre for Economics.
    20. Yucesan, Melih & Kahraman, Gökhan, 2019. "Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP," Energy Policy, Elsevier, vol. 126(C), pages 343-351.

    More about this item

    Keywords

    mortality; actuarial approach.; CCS; risk; storage safety; CSC; risque; analogue; sûreté du stockage; mortalité; approche actuarielle.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00487175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.