IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2003.87.html
   My bibliography  Save this paper

Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments

Author

Listed:
  • Lucas Bretschger

    (WIF – Institute of Economic Research, ETH-Zentrum, Zurich, Switzerland)

  • Sjak Smulders

    (Department of Economics, Tilburg University, The Netherlands)

Abstract

Traditional resource economics has been criticised for assuming too high elasticities of substitution, not observing material balance principles and relying too much on planner solutions to obtain long-term growth. By analysing a multi-sector R&D-based endogenous growth model with exhaustible natural resources, labour, knowledge, and physical capital as inputs, the present paper addresses this critique. We study transitional dynamics and the long-term growth path and identify conditions under which firms keep spending on research and development. We demonstrate that long-run growth can be sustained under free market conditions even when elasticities of substitution between capital and resources are low and the supply of physical capital is limited, which seems to be crucial for today’s sustainability debate.

Suggested Citation

  • Lucas Bretschger & Sjak Smulders, 2003. "Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments," Working Papers 2003.87, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2003.87
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2003-087.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grimaud, Andre & Rouge, Luc, 2003. "Non-renewable resources and growth with vertical innovations: optimum, equilibrium and economic policies," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 433-453, March.
    2. Bretschger, Lucas, 1998. "How to substitute in order to sustain: knowledge driven growth under environmental restrictions," Environment and Development Economics, Cambridge University Press, vol. 3(4), pages 425-442, October.
    3. Bovenberg, A.L. & Smulders, J.A., 1993. "Environmental quality and pollution-saving technological change in a two-sector endogenous growth model," Discussion Paper 1993-21, Tilburg University, Center for Economic Research.
    4. Poul Schou, 2000. "Polluting Non-Renewable Resources and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(2), pages 211-227, June.
    5. Christian Scholz & Georg Ziemes, 1999. "Exhaustible Resources, Monopolistic Competition, and Endogenous Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 13(2), pages 169-185, March.
    6. Christian Groth & Poul Schou, 2002. "Can non-renewable resources alleviate the knife-edge character of endogenous growth?," Oxford Economic Papers, Oxford University Press, vol. 54(3), pages 386-411, July.
    7. Heal, Geoffrey M., 1993. "The optimal use of exhaustible resources," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 3, chapter 18, pages 855-880, Elsevier.
    8. R. M. Solow, 1974. "Intergenerational Equity and Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 29-45.
    9. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    10. Hartwick, John M, 1977. "Intergenerational Equity and the Investing of Rents from Exhaustible Resources," American Economic Review, American Economic Association, vol. 67(5), pages 972-974, December.
    11. Charles I. Jones, 1999. "Growth: With or Without Scale Effects?," American Economic Review, American Economic Association, vol. 89(2), pages 139-144, May.
    12. Withagen, Cees & B. Asheim, Geir, 1998. "Characterizing sustainability: The converse of Hartwick's rule," Journal of Economic Dynamics and Control, Elsevier, vol. 23(1), pages 159-165, September.
    13. Lans Bovenberg, A. & Smulders, Sjak, 1995. "Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model," Journal of Public Economics, Elsevier, vol. 57(3), pages 369-391, July.
    14. Cleveland, Cutler J. & Ruth, Matthias, 1997. "When, where, and by how much do biophysical limits constrain the economic process?: A survey of Nicholas Georgescu-Roegen's contribution to ecological economics," Ecological Economics, Elsevier, vol. 22(3), pages 203-223, September.
    15. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    16. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    17. Bovenberg, A.L. & Smulders, J.A., 1993. "Environmental quality and pollution-saving technological change in a two-sector endogenous growth model," Discussion Paper 1993-21, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Ricci, 2007. "Environmental policy and growth when inputs are differentiated in pollution intensity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(3), pages 285-310, November.
    2. Lucas Bretschger & Simone Valente, 2011. "International trade and net investment: theory and evidence," International Economics and Economic Policy, Springer, vol. 8(2), pages 197-224, June.
    3. Valente, Simone, 2008. "Intergenerational transfers, lifetime welfare, and resource preservation," Environment and Development Economics, Cambridge University Press, vol. 13(1), pages 53-78, February.
    4. Manh Hung Nguyen & Phu Nguyen Van, 2008. "Growth and convergence in a model with renewable and nonrenewable resources," Working Papers 21, Development and Policies Research Center (DEPOCEN), Vietnam.
    5. Simone Valente, 2005. "Genuine dissaving and optimal growth," CER-ETH Economics working paper series 05/38, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    6. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
    7. Dagmar Nelissen & Till Requate, 2007. "Pollution-reducing and resource-saving technological progress," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 6(1), pages 5-44.
    8. Jinhee Kwon & Cheong Kim & Kun Chang Lee, 2020. "Moderating Effect of the Continental Factor on the Business Strategy and M&A Performance in the Pharmaceutical Industry for Sustainable International Business," Sustainability, MDPI, vol. 12(12), pages 1-14, June.
    9. Di Maria, Corrado & Valente, Simone, 2006. "The Direction of Technical Change in Capital-Resource Economies," MPRA Paper 1040, University Library of Munich, Germany.
    10. Fagnart, Jean-François & Germain, Marc, 2011. "Quantitative versus qualitative growth with recyclable resource," Ecological Economics, Elsevier, vol. 70(5), pages 929-941, March.
    11. Simone Valente, 2006. "Trade, Envy and Growth: International Status Seeking in a Two-Country World," CER-ETH Economics working paper series 06/53, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    12. Martin Stürmer & Gregor Schwerhoff, 2012. "Non-Renewable but Inexhaustible – Resources in an Endogenous Growth Model," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2012_09, Max Planck Institute for Research on Collective Goods.
    13. Lucas Bretschger, 2004. "Natural resource scarcity and long-run development: central mechanisms when conditions are seemingly unfavourable," CER-ETH Economics working paper series 03/29, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    14. Jean-Pierre Amigues & Ngo Van Long & Michel Moreaux, 2004. "Overcoming Natural Resource Constraints Through R&D," CIRANO Working Papers 2004s-14, CIRANO.
    15. Wernstedt, Kris & Crooks, Lisa & Hersh, Robert, 2003. "Brownfields Redevelopment in Wisconsin: A Survey of the Field," Discussion Papers 10443, Resources for the Future.
    16. Krysiak, Frank C., 2006. "Entropy, limits to growth, and the prospects for weak sustainability," Ecological Economics, Elsevier, vol. 58(1), pages 182-191, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esther Fernández & Rafaela Pérez Sánchez & Jesús Ruiz, 2003. "Tax Reforms in an Endogenous Growth Model with Pollution," Economic Working Papers at Centro de Estudios Andaluces E2003/31, Centro de Estudios Andaluces.
    2. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
    3. Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.
    4. Lucas Bretschger, 2013. "Population Growth and Natural-Resource Scarcity: Long-Run Development under Seemingly Unfavorable Conditions," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(3), pages 722-755, July.
    5. Lucas Bretschger, 2004. "Natural resource scarcity and long-run development: central mechanisms when conditions are seemingly unfavourable," CER-ETH Economics working paper series 03/29, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    6. Dagmar Nelissen & Till Requate, 2007. "Pollution-reducing and resource-saving technological progress," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 6(1), pages 5-44.
    7. Lucas Bretschger, 2016. "Is the Environment Compatible with Growth? Adopting an Integrated Framework," CER-ETH Economics working paper series 16/260, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    8. Growiec, Jakub & Schumacher, Ingmar, 2008. "On technical change in the elasticities of resource inputs," Resources Policy, Elsevier, vol. 33(4), pages 210-221, December.
    9. Antony, Jürgen & Klarl, Torben, 2022. "Poverty and sustainable development around the world during transition periods," Energy Economics, Elsevier, vol. 110(C).
    10. Bretschger, Lucas, 2015. "Energy prices, growth, and the channels in between: Theory and evidence," Resource and Energy Economics, Elsevier, vol. 39(C), pages 29-52.
    11. Silva, Susana & Soares, Isabel & Afonso, Oscar, 2013. "Economic and environmental effects under resource scarcity and substitution between renewable and non-renewable resources," Energy Policy, Elsevier, vol. 54(C), pages 113-124.
    12. Smulders, J.A., 2005. "Endogenous technological change, natural resources and growth," Other publications TiSEM d6e27500-7604-420f-9961-4, Tilburg University, School of Economics and Management.
    13. van der Ploeg, Frederick, 2010. "Why do many resource-rich countries have negative genuine saving?: Anticipation of better times or rapacious rent seeking," Resource and Energy Economics, Elsevier, vol. 32(1), pages 28-44, January.
    14. Ricci, Francesco, 2007. "Channels of transmission of environmental policy to economic growth: A survey of the theory," Ecological Economics, Elsevier, vol. 60(4), pages 688-699, February.
    15. Sasaki, Hiroaki & Mino, Kazuo, 2024. "Effects of exhaustible resources and declining population on economic growth with Hotelling’s rule," International Review of Economics & Finance, Elsevier, vol. 94(C).
    16. Simone Valente, 2007. "Human Capital, Resource Constraints and Intergenerational Fairness," CER-ETH Economics working paper series 07/68, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    17. Asheim, Geir B. & Buchholz, Wolfgang & Hartwick, John M. & Mitra, Tapan & Withagen, Cees, 2007. "Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints," Journal of Environmental Economics and Management, Elsevier, vol. 53(2), pages 213-229, March.
    18. Brock, William A. & Taylor, M. Scott, 2005. "Economic Growth and the Environment: A Review of Theory and Empirics," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 28, pages 1749-1821, Elsevier.
    19. Valente, Simone, 2011. "Intergenerational externalities, sustainability and welfare—The ambiguous effect of optimal policies on resource depletion," Resource and Energy Economics, Elsevier, vol. 33(4), pages 995-1014.

    More about this item

    Keywords

    Growth; Non-renewable resources; Substitution; Investment incentives; Endogenous technological change; Sustainability;
    All these keywords.

    JEL classification:

    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2003.87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.