IDEAS home Printed from https://ideas.repec.org/p/ewp/wpaper/349web.html
   My bibliography  Save this paper

Some structural properties of a lattice of embedded coalitions

Author

Listed:
  • José María Alonso-Meijide

    (Universidade de Santiago de Compostela)

  • Mikel Alvarez-Mozos

    (Universitat de Barcelona)

  • María Gloria Fiestras-Janeiro

    (Universidade de Vigo)

  • Andrés Jiménez-Losada

    (Universitad de Sevilla)

Abstract

In this paper we investigate some structural properties of the order on the set of embedded coalitions outlined in de Clippel and Serrano (2008). Besides, we characterize the scalars associated to the basis they proposed of the vector space of partition function form games.

Suggested Citation

  • José María Alonso-Meijide & Mikel Alvarez-Mozos & María Gloria Fiestras-Janeiro & Andrés Jiménez-Losada, 2016. "Some structural properties of a lattice of embedded coalitions," UB School of Economics Working Papers 2016/349, University of Barcelona School of Economics.
  • Handle: RePEc:ewp:wpaper:349web
    as

    Download full text from publisher

    File URL: http://diposit.ub.edu/dspace/bitstream/2445/102039/1/E16-349_Alonso_SomeStructural.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michel Grabisch, 2010. "The lattice of embedded subsets," Post-Print hal-00457827, HAL.
    2. Geoffroy de Clippel & Roberto Serrano, 2008. "Marginal Contributions and Externalities in the Value," Econometrica, Econometric Society, vol. 76(6), pages 1413-1436, November.
    3. Kim Hang Pham Do & Henk Norde, 2007. "The Shapley Value For Partition Function Form Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 353-360.
    4. Dutta, Bhaskar & Ehlers, Lars & Kar, Anirban, 2010. "Externalities, potential, value and consistency," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2380-2411, November.
    5. M. J. Albizuri & J. Arin & J. Rubio, 2005. "An Axiom System For A Value For Games In Partition Function Form," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 63-72.
    6. Macho-Stadler, Ines & Perez-Castrillo, David & Wettstein, David, 2007. "Sharing the surplus: An extension of the Shapley value for environments with externalities," Journal of Economic Theory, Elsevier, vol. 135(1), pages 339-356, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, December.
    2. M. Álvarez-Mozos & O. Tejada, 2015. "The Banzhaf value in the presence of externalities," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(4), pages 781-805, April.
    3. J. M. Alonso-Meijide & M. Álvarez-Mozos & M. G. Fiestras-Janeiro & A. Jiménez-Losada, 2021. "Marginality and convexity in partition function form games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 99-121, August.
    4. Grabisch, Michel & Funaki, Yukihiko, 2012. "A coalition formation value for games in partition function form," European Journal of Operational Research, Elsevier, vol. 221(1), pages 175-185.
    5. Effrosyni Diamantoudi & Inés Macho-Stadler & David Pérez-Castrillo & Licun Xue, 2015. "Sharing the surplus in games with externalities within and across issues," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 315-343, October.
    6. Andr'e Casajus & Yukihiko Funaki & Frank Huettner, 2024. "Random partitions, potential, value, and externalities," Papers 2402.00394, arXiv.org, revised Jun 2024.
    7. Macho-Stadler, Inés & Pérez-Castrillo, David & Wettstein, David, 2018. "Values for environments with externalities – The average approach," Games and Economic Behavior, Elsevier, vol. 108(C), pages 49-64.
    8. Borm, Peter & Ju, Yuan & Wettstein, David, 2015. "Rational bargaining in games with coalitional externalities," Journal of Economic Theory, Elsevier, vol. 157(C), pages 236-254.
    9. Frank Huettner & André Casajus, 2019. "Marginality, dividends, and the value in games with externalities," ESMT Research Working Papers ESMT-19-01, ESMT European School of Management and Technology.
    10. Mikel Alvarez-Mozos & José María Alonso-Meijide & María Gloria Fiestras-Janeiro, 2016. "The Shapley-Shubik Index in the Presence of Externalities," UB School of Economics Working Papers 2016/342, University of Barcelona School of Economics.
    11. Dutta, Bhaskar & Ehlers, Lars & Kar, Anirban, 2010. "Externalities, potential, value and consistency," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2380-2411, November.
    12. Ander Perez-Orive & Andrea Caggese, 2017. "Capital Misallocation and Secular Stagnation," 2017 Meeting Papers 382, Society for Economic Dynamics.
    13. Takaaki Abe, 2020. "Population monotonic allocation schemes for games with externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 97-117, March.
    14. René Brink & Dinko Dimitrov & Agnieszka Rusinowska, 2021. "Winning coalitions in plurality voting democracies," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(3), pages 509-530, April.
    15. Álvarez-Mozos, M. & Alonso-Meijide, J.M. & Fiestras-Janeiro, M.G., 2017. "On the externality-free Shapley–Shubik index," Games and Economic Behavior, Elsevier, vol. 105(C), pages 148-154.
    16. Michel Grabisch, 2010. "The lattice of embedded subsets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00457827, HAL.
    17. Cheng-Cheng Hu & Yi-You Yang, 2010. "An axiomatic characterization of a value for games in partition function form," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 1(4), pages 475-487, September.
    18. Oskar Skibski & Tomasz Michalak, 2020. "Fair division in the presence of externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 147-172, March.
    19. Joss Sánchez-Pérez, 2017. "A decomposition for the space of games with externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 205-233, March.
    20. José María Alonso-Meijide & Mikel Álvarez-Mozos & María Gloria Fiestras-Janeiro, 2015. "Power Indices and Minimal Winning Coalitions in Simple Games with Externalities Abstract: We propose a generalization of simple games to situations with coalitional externalities. The main novelty of ," UB School of Economics Working Papers 2015/328, University of Barcelona School of Economics.

    More about this item

    Keywords

    embedded coalitions; lattice; partition function form games.;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ewp:wpaper:349web. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: University of Barcelona School of Economics (email available below). General contact details of provider: https://edirc.repec.org/data/feubaes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.