IDEAS home Printed from https://ideas.repec.org/p/esm/wpaper/esmt-19-01.html
   My bibliography  Save this paper

Marginality, dividends, and the value in games with externalities

Author

Listed:
  • Frank Huettner

    (ESMT Berlin)

  • André Casajus

    (HHL Leipzig Graduate School of Management)

Abstract

In the absence of externalities, marginality is equivalent to an independence property that rests on Harsanyi‘s dividends. These dividends identify the surplus inherent to each coalition. Independence states that a player‘s payoff stays the same if only dividends of coalitions to which this player does not belong to change. We introduce notions of marginality and independence for games with externalities. We measure a player‘s contribution in an embedded coalition by the change in the worth of this coalition that results when the player is removed from the game. We provide a characterization result using efficiency, anonymity, and marginality or independence, which generalizes Young‘s characterization of the Shapley value. An application of our result yields a new characterization of the solution put forth by Macho-Stadler et al. (J Econ Theor, 135, 2007, 339-356) without linearity, as well as for almost all generalizations put forth in the literature. The introduced method also allows us to investigate egalitarian solutions and to reveal how accounting for externalities may result in a deviation from the Shapley value. This is exemplified with a new solution that is designed in a way to not reward external effects, while at the same time it cannot be assumed that any partition is the default partition.

Suggested Citation

  • Frank Huettner & André Casajus, 2019. "Marginality, dividends, and the value in games with externalities," ESMT Research Working Papers ESMT-19-01, ESMT European School of Management and Technology.
  • Handle: RePEc:esm:wpaper:esmt-19-01
    as

    Download full text from publisher

    File URL: http://static.esmt.org/publications/workingpapers/ESMT-19-01.pdf
    File Function: First version, 2019
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dutta, Bhaskar & Ehlers, Lars & Kar, Anirban, 2010. "Externalities, potential, value and consistency," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2380-2411, November.
    2. Skibski, Oskar & Michalak, Tomasz P. & Wooldridge, Michael, 2018. "The Stochastic Shapley Value for coalitional games with externalities," Games and Economic Behavior, Elsevier, vol. 108(C), pages 65-80.
    3. M. J. Albizuri & J. Arin & J. Rubio, 2005. "An Axiom System For A Value For Games In Partition Function Form," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 63-72.
    4. Geoffroy de Clippel & Roberto Serrano, 2008. "Marginal Contributions and Externalities in the Value," Econometrica, Econometric Society, vol. 76(6), pages 1413-1436, November.
    5. McQuillin, Ben, 2009. "The extended and generalized Shapley value: Simultaneous consideration of coalitional externalities and coalitional structure," Journal of Economic Theory, Elsevier, vol. 144(2), pages 696-721, March.
    6. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    7. Cheng-Cheng Hu & Yi-You Yang, 2010. "An axiomatic characterization of a value for games in partition function form," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 1(4), pages 475-487, September.
    8. Kim Hang Pham Do & Henk Norde, 2007. "The Shapley Value For Partition Function Form Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 353-360.
    9. Bolger, E M, 1989. "A Set of Axioms for a Value for Partition Function Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(1), pages 37-44.
    10. R. M. Thrall & W. F. Lucas, 1963. "N‐person games in partition function form," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 10(1), pages 281-298, March.
    11. José Mª Alonso-Meijide & Mikel Álvarez-Mozos & Mª Gloria Fiestras-Janeiro & Andrés Jiménez-Losada, 2019. "A new order on embedded coalitions: Properties and applications," UB School of Economics Working Papers 2019/388, University of Barcelona School of Economics.
    12. Macho-Stadler, Ines & Perez-Castrillo, David & Wettstein, David, 2007. "Sharing the surplus: An extension of the Shapley value for environments with externalities," Journal of Economic Theory, Elsevier, vol. 135(1), pages 339-356, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel, C. & Ortega, E. & del Pozo, M., 2020. "Marginality and Myerson values," European Journal of Operational Research, Elsevier, vol. 284(1), pages 301-312.
    2. C. Manuel & E. Ortega & M. del Pozo, 2023. "Marginality and the position value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 459-474, July.
    3. Álvarez-Mozos, Mikel & Ehlers, Lars, 2024. "Externalities and the (pre)nucleolus in cooperative games," Mathematical Social Sciences, Elsevier, vol. 128(C), pages 10-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ander Perez-Orive & Andrea Caggese, 2017. "Capital Misallocation and Secular Stagnation," 2017 Meeting Papers 382, Society for Economic Dynamics.
    2. J. M. Alonso-Meijide & M. Álvarez-Mozos & M. G. Fiestras-Janeiro & A. Jiménez-Losada, 2021. "Marginality and convexity in partition function form games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 99-121, August.
    3. Andr'e Casajus & Yukihiko Funaki & Frank Huettner, 2024. "Random partitions, potential, value, and externalities," Papers 2402.00394, arXiv.org, revised Jun 2024.
    4. Macho-Stadler, Inés & Pérez-Castrillo, David & Wettstein, David, 2018. "Values for environments with externalities – The average approach," Games and Economic Behavior, Elsevier, vol. 108(C), pages 49-64.
    5. Inés Macho-Stadler & David Pérez-Castrillo & David Wettstein, 2017. "Extensions of the Shapley value for Environments with Externalities," Working Papers 1002, Barcelona School of Economics.
    6. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, September.
    7. Effrosyni Diamantoudi & Inés Macho-Stadler & David Pérez-Castrillo & Licun Xue, 2015. "Sharing the surplus in games with externalities within and across issues," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 315-343, October.
    8. Oskar Skibski & Tomasz Michalak, 2020. "Fair division in the presence of externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 147-172, March.
    9. Skibski, Oskar & Michalak, Tomasz P. & Wooldridge, Michael, 2018. "The Stochastic Shapley Value for coalitional games with externalities," Games and Economic Behavior, Elsevier, vol. 108(C), pages 65-80.
    10. René Brink & Dinko Dimitrov & Agnieszka Rusinowska, 2021. "Winning coalitions in plurality voting democracies," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(3), pages 509-530, April.
    11. M. Álvarez-Mozos & O. Tejada, 2015. "The Banzhaf value in the presence of externalities," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(4), pages 781-805, April.
    12. Grabisch, Michel & Funaki, Yukihiko, 2012. "A coalition formation value for games in partition function form," European Journal of Operational Research, Elsevier, vol. 221(1), pages 175-185.
    13. Michel Grabisch, 2010. "The lattice of embedded subsets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00457827, HAL.
    14. Joss Sánchez-Pérez, 2017. "A decomposition for the space of games with externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 205-233, March.
    15. Saavedra–Nieves, Alejandro & Casas–Méndez, Balbina, 2023. "On the centrality analysis of covert networks using games with externalities," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1365-1378.
    16. Borm, Peter & Ju, Yuan & Wettstein, David, 2015. "Rational bargaining in games with coalitional externalities," Journal of Economic Theory, Elsevier, vol. 157(C), pages 236-254.
    17. Dutta, Bhaskar & Ehlers, Lars & Kar, Anirban, 2010. "Externalities, potential, value and consistency," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2380-2411, November.
    18. Takaaki Abe, 2020. "Population monotonic allocation schemes for games with externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 97-117, March.
    19. Inés Macho-Stadler & David Pérez-Castrillo & David Wettstein, 2010. "Dividends and weighted values in games with externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 177-184, March.
    20. Álvarez-Mozos, M. & Alonso-Meijide, J.M. & Fiestras-Janeiro, M.G., 2017. "On the externality-free Shapley–Shubik index," Games and Economic Behavior, Elsevier, vol. 105(C), pages 148-154.

    More about this item

    Keywords

    Shapley value; potential; restriction operator; partition function form game; externalities;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D60 - Microeconomics - - Welfare Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:esm:wpaper:esmt-19-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ESMT Faculty Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emstbde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.