IDEAS home Printed from https://ideas.repec.org/p/eti/dpaper/15090.html
   My bibliography  Save this paper

Extensions of Rubin's Causal Model for a Latent-Class Treatment Variable: An analysis of the effects of employers' work-life balance policies on women's income attainment in Japan

Author

Listed:
  • YAMAGUCHI Kazuo

Abstract

Combining inverse-probability weighting based on propensity scores and a semiparametric outcome model with a latent-class variable as an intervening variable, this paper introduces extensions of Rubin's causal model for the case where the treatment variable is a latent-class variable with indicators. Although the paper first introduces a method for the analysis of cross-sectional survey data, some extensions of the method for panel survey data analysis are also described. The method is especially useful when we have a set of mutually related categorical variables to characterize a specific latent characteristic of social contexts such as firms, schools, or neighborhoods, and when the latent characteristic is hypothesized to affect an individual-level outcome and we need to control for selection bias of people in different social contexts. An application, which is based on data for employees and employers collected in 2009 by the Research Institute of Economy, Trade and Industry in Japan, focuses on the effect of employers' work-life balance policies on female regular white-collar employees' income. Six dichotomous indicators of policies are employed. Variables tested for possible confounding factors include individual human-capital and labor-hour variables and some firm-level exogenous variables. The analytical results show that although a certain portion of the effects of employer's work-life balance policies on income are explained as a result of such a selection bias that firms of larger size have a higher prevalence rate of those policies and at the same time higher average income for employees, the positive effects of those policies on income among female employees still remain significant after the elimination of the selection bias.

Suggested Citation

  • YAMAGUCHI Kazuo, 2015. "Extensions of Rubin's Causal Model for a Latent-Class Treatment Variable: An analysis of the effects of employers' work-life balance policies on women's income attainment in Japan," Discussion papers 15090, Research Institute of Economy, Trade and Industry (RIETI).
  • Handle: RePEc:eti:dpaper:15090
    as

    Download full text from publisher

    File URL: https://www.rieti.go.jp/jp/publications/dp/15e090.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    2. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    2. Cazzuffi, Chiara & Pereira-López, Mariana & Soloaga, Isidro, 2017. "Local poverty reduction in Chile and Mexico: The role of food manufacturing growth," Food Policy, Elsevier, vol. 68(C), pages 160-185.
    3. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    4. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    5. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    6. Verena Lauber & Johanna Storck, 2016. "Helping with the Kids? How Family-Friendly Workplaces Affect Parental Well-Being and Behavior," SOEPpapers on Multidisciplinary Panel Data Research 883, DIW Berlin, The German Socio-Economic Panel (SOEP).
    7. Callaway, Brantly & Li, Tong, 2023. "Policy evaluation during a pandemic," Journal of Econometrics, Elsevier, vol. 236(1).
    8. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    9. Kazuki Kamimura & Shohei Okamoto & Kenichi Shiraishi & Kazuto Sumita & Kohei Komamura & Akiko Tsukao & Shinya Kuno, 2023. "Financial incentives for exercise and medical care costs," International Journal of Economic Policy Studies, Springer, vol. 17(1), pages 95-116, February.
    10. repec:diw:diwwpp:dp1630 is not listed on IDEAS
    11. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    12. Trojanek, Radoslaw & Huderek-Glapska, Sonia, 2018. "Measuring the noise cost of aviation – The association between the Limited Use Area around Warsaw Chopin Airport and property values," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 103-114.
    13. Picarelli, Nathalie, 2016. "Who really benefits from export processing zones? Evidence from Nicaraguan municipalities," Labour Economics, Elsevier, vol. 41(C), pages 318-332.
    14. Christophe Loussouarn & Carine Franc & Yann Videau & Julien Mousquès, 2021. "Can General Practitioners Be More Productive? The Impact of Teamwork and Cooperation with Nurses on GP Activities," Health Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 680-698, March.
    15. Pablo Lavado & Gonzalo Rivera, 2016. "Identifying Treatment Effects with Data Combination and Unobserved Heterogeneity," Working Papers 79, Peruvian Economic Association.
    16. Haiyang Lu & Peng Nie & Alfonso Sousa-Poza, 2021. "The Effect of Parental Educational Expectations on Adolescent Subjective Well-Being and the Moderating Role of Perceived Academic Pressure: Longitudinal Evidence for China," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 14(1), pages 117-137, February.
    17. Görg Holger & Marchal Léa, 2019. "Die Effekte deutscher Direktinvestitionen im Empfängerland vor dem Hintergrund des Leistungsbilanzüberschusses: Empirische Evidenz mit Mikrodaten für Frankreich," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 20(1), pages 53-69, June.
    18. Léa Marchal & Clément Nedoncelle, 2019. "Immigrants, occupations and firm export performance," Review of International Economics, Wiley Blackwell, vol. 27(5), pages 1480-1509, November.
    19. James Roumasset & Christopher Wada, 2012. "The Economics of Groundwater," Working Papers 201211, University of Hawaii at Manoa, Department of Economics.
    20. Colin Green & Ole Henning Nyhus & Kari Vea Salvanes, "undated". "How does testing young children influence educational attainment and well-being?," Working Paper Series 19422, Department of Economics, Norwegian University of Science and Technology.
    21. Hisaki Kono & Yasuyuki Sawada & Abu S. Shonchoy, 2016. "DVD-based Distance-learning Program for University Entrance Exams: Experimental Evidence from Rural Bangladesh," CIRJE F-Series CIRJE-F-1027, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eti:dpaper:15090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: TANIMOTO, Toko (email available below). General contact details of provider: https://edirc.repec.org/data/rietijp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.