IDEAS home Printed from https://ideas.repec.org/p/eti/dpaper/15072.html
   My bibliography  Save this paper

Use of Grace Periods and Their Impact on Knowledge Flow: Evidence from Japan

Author

Listed:
  • NAGAOKA Sadao
  • NISHIMURA Yoichiro

Abstract

This paper examines the determinants of the use of grace periods, as well as their effects on knowledge flow, in order to assess the economic effects based on a large scale panel data of the use of grace periods in Japan. For this purpose we discriminate which of the three views ("acceleration of disclosure," "deferral of domestic patent filing," and "promotion of domestic patenting") best explains the use of grace periods. The major findings are the following. Grace periods are used more for inventions with strong science linkages and in high technology sectors, but for those with a smaller number of claims. Science linkages matter more than the number of claims for academic inventors compared to corporate inventors in using grace periods. Their use has significantly declined in those technology areas with high level of international applications, following the Patent Cooperation Treaty (PCT) Reform in January 2004, allowing, in particular, automatic designation of all PCT contracting states. Critically, the use of grace periods significantly increased the knowledge diffusion to third parties as measured by non-self forward citations, relative to self-citations. Such effect is stronger than that of ex-post academic disclosure, following the patent application or its publication. These results show that the main motivation of the use of grace periods is the acceleration of disclosure, and that they enhance knowledge diffusion and are likely to enhance social welfare.

Suggested Citation

  • NAGAOKA Sadao & NISHIMURA Yoichiro, 2015. "Use of Grace Periods and Their Impact on Knowledge Flow: Evidence from Japan," Discussion papers 15072, Research Institute of Economy, Trade and Industry (RIETI).
  • Handle: RePEc:eti:dpaper:15072
    as

    Download full text from publisher

    File URL: https://www.rieti.go.jp/jp/publications/dp/15e072.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Franzoni, Chiara & Scellato, Giuseppe, 2010. "The grace period in international patent law and its effect on the timing of disclosure," Research Policy, Elsevier, vol. 39(2), pages 200-213, March.
    3. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    4. Suzanne Scotchmer & Jerry Green, 1990. "Novelty and Disclosure in Patent Law," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 131-146, Spring.
    5. Rebecca Henderson & Adam Jaffe & Manuel Trajtenberg, 2005. "Patent Citations and the Geography of Knowledge Spillovers: A Reassessment: Comment," American Economic Review, American Economic Association, vol. 95(1), pages 461-464, March.
    6. Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009. "Applicant and examiner citations in U.S. patents: An overview and analysis," Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
    7. Goto, Akira & Motohashi, Kazuyuki, 2007. "Construction of a Japanese Patent Database and a first look at Japanese patenting activities," Research Policy, Elsevier, vol. 36(9), pages 1431-1442, November.
    8. Peter Thompson, 2006. "Patent Citations and the Geography of Knowledge Spillovers: Evidence from Inventor- and Examiner-added Citations," The Review of Economics and Statistics, MIT Press, vol. 88(2), pages 383-388, May.
    9. Owen-Smith, Jason & Powell, Walter W, 2001. "To Patent or Not: Faculty Decisions and Institutional Success at Technology Transfer," The Journal of Technology Transfer, Springer, vol. 26(1-2), pages 99-114, January.
    10. NAGAOKA Sadao & TSUKADA Naotoshi, 2007. "Innovation Process in Japan: Findings from the RIETI Inventors Survey (Japanese)," Discussion Papers (Japanese) 07046, Research Institute of Economy, Trade and Industry (RIETI).
    11. Geuna, Aldo & Nesta, Lionel J.J., 2006. "University patenting and its effects on academic research: The emerging European evidence," Research Policy, Elsevier, vol. 35(6), pages 790-807, July.
    12. Jeremy M. Grushcow, 2004. "Measuring Secrecy: A Cost of the Patent System Revealed," The Journal of Legal Studies, University of Chicago Press, vol. 33(1), pages 59-84, January.
    13. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
    14. Peter Thompson & Melanie Fox-Kean, 2005. "Patent Citations and the Geography of Knowledge Spillovers: A Reassessment: Reply," American Economic Review, American Economic Association, vol. 95(1), pages 465-466, March.
    15. Peter Thompson & Melanie Fox-Kean, 2005. "Patent Citations and the Geography of Knowledge Spillovers: A Reassessment," American Economic Review, American Economic Association, vol. 95(1), pages 450-460, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    2. Diemer, Andreas & Regan, Tanner, 2022. "No inventor is an island: Social connectedness and the geography of knowledge flows in the US," Research Policy, Elsevier, vol. 51(2).
    3. Long, Cheryl Xiaoning & Yi, Wei, 2024. "Information effects of high-speed rail: Evidence from patent citations in China," China Economic Review, Elsevier, vol. 84(C).
    4. Po‐Hsuan Hsu & Hai‐Ping Hui & Hsiao‐Hui Lee & Kevin Tseng, 2022. "Supply chain technology spillover, customer concentration, and product invention," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(2), pages 393-417, April.
    5. Keith Head & Yao Amber Li & Asier Minondo, 2019. "Geography, Ties, and Knowledge Flows: Evidence from Citations in Mathematics," The Review of Economics and Statistics, MIT Press, vol. 101(4), pages 713-727, October.
    6. Soonwoo Kwon & Jihong Lee & Sokbae (Simon) Lee, 2014. "International trends in technological progress: stylized facts from patent citations, 1980-2011," CeMMAP working papers 16/14, Institute for Fiscal Studies.
    7. Li, Yao Amber, 2014. "Borders and distance in knowledge spillovers: Dying over time or dying with age?—Evidence from patent citations," European Economic Review, Elsevier, vol. 71(C), pages 152-172.
    8. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    9. Heide Fier & Andreas Pyka, 2014. "Against the one-way-street: analyzing knowledge transfer from industry to science," The Journal of Technology Transfer, Springer, vol. 39(2), pages 219-246, April.
    10. Stefan Wagner & Karin Hoisl & Grid Thoma, 2014. "Overcoming localization of knowledge — the role of professional service firms," Strategic Management Journal, Wiley Blackwell, vol. 35(11), pages 1671-1688, November.
    11. Stefano Breschi & Francesco Lissoni & Ernest Miguelez, 2017. "Foreign-origin inventors in the USA: testing for diaspora and brain gain effects," Journal of Economic Geography, Oxford University Press, vol. 17(5), pages 1009-1038.
    12. Pierre Cotterlaz, 2021. "Three essays on spatial frictions [Trois essais sur les frictions spatiales]," SciencePo Working papers tel-03436173, HAL.
    13. Jasjit Singh & Matt Marx, 2013. "Geographic Constraints on Knowledge Spillovers: Political Borders vs. Spatial Proximity," Management Science, INFORMS, vol. 59(9), pages 2056-2078, September.
    14. Nagaoka, Sadao & Motohashi, Kazuyuki & Goto, Akira, 2010. "Patent Statistics as an Innovation Indicator," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1083-1127, Elsevier.
    15. Hyuk-Soo Kwon & Jihong Lee & Sokbae Lee & Ryungha Oh, 2022. "Knowledge spillovers and patent citations: trends in geographic localization, 1976–2015," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 31(3), pages 123-147, April.
    16. Emanuele Bacchiocchi & Fabio Montobbio, 2010. "International Knowledge Diffusion and Home‐bias Effect: Do USPTO and EPO Patent Citations Tell the Same Story?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 112(3), pages 441-470, September.
    17. William R. Kerr & Scott Duke Kominers, 2015. "Agglomerative Forces and Cluster Shapes," The Review of Economics and Statistics, MIT Press, vol. 97(4), pages 877-899, October.
    18. Carlino, Gerald & Kerr, William R., 2015. "Agglomeration and Innovation," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 349-404, Elsevier.
    19. Edward L. Glaeser & William R. Kerr, 2009. "Local Industrial Conditions and Entrepreneurship: How Much of the Spatial Distribution Can We Explain?," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 18(3), pages 623-663, September.
    20. Ronald J. Mann & Marian Underweiser, 2012. "A New Look at Patent Quality: Relating Patent Prosecution to Validity," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 9(1), pages 1-32, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eti:dpaper:15072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: TANIMOTO, Toko (email available below). General contact details of provider: https://edirc.repec.org/data/rietijp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.