IDEAS home Printed from https://ideas.repec.org/p/ess/wpaper/id10936.html
   My bibliography  Save this paper

Urban Water Systems in India: A Way Forward

Author

Listed:
  • Mihir Shah

Abstract

This paper provides a new presentation of the urban water problem and offers a set of solutions that are sustainable, both in ecological and financial terms, and seek to tackle the deep inequities in the urban water space in India. It highlights the significance of groundwater, the dark spot of Indian urban water planning and proposes a typology that could be used to comprehend the diversity of urban aquifer formations. The paper highlights the urban wastewater challenge and emphasises the need to work simultaneously on water and wastewater management. The paper advances a series of hypotheses, an initial analytical framework and the outlines of a way forward for urban water systems in India, which could provide a rich terrain for further research. The paper concludes with brief illustrative case-studies of two major emerging cities– Indore and Nagpur – where the new approach advocated in the paper could be fruitfully tried out. [Working Paper 323].

Suggested Citation

  • Mihir Shah, 2016. "Urban Water Systems in India: A Way Forward," Working Papers id:10936, eSocialSciences.
  • Handle: RePEc:ess:wpaper:id:10936
    Note: Institutional Papers
    as

    Download full text from publisher

    File URL: http://www.esocialsciences.org/Download/repecDownload.aspx?fname=A201661614388_20.pdf&fcategory=Articles&AId=10936&fref=repec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foster, S. & Lawrence, A. & Morris, B., 1998. "Groundwater in Urban Development. Assessing Management Needs and Formulating Policy Strategies," Papers 390, World Bank - Technical Papers.
    2. Sridhar, Kala Seetharam, 2006. "Reforming delivery of urban services in developing countries: Evidence from a case study in India," Working Papers 06/44, National Institute of Public Finance and Policy.
    3. World Bank, 2010. "Deep Wells and Prudence : Towards Pragmatic Action for Addressing Groundwater Overexploitation in India," World Bank Publications - Reports 2835, The World Bank Group.
    4. Shah, Tushaar & Burke, J. & Villholth, K. & Angelica, M. & Custodio, E. & Daibes, F. & Hoogesteger, J. & Giordano, Mark & Girman, J. & van der Gun, J. & Kendy, E. & Kijne, J. & Llamas, R. & Masiyandim, 2007. "Groundwater: a global assessment of scale and significance," IWMI Books, Reports H040203, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanju John Thomas & Mukund Haribhau Bade & Sudhansu Sekhar Sahoo & Sheffy Thomas & Ajith Kumar & Mohamed M. Awad, 2022. "Urban Water Management with a Full Cost Recovery Policy: The Impact of Externalities on Pricing," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    2. R.G.Bhatt, 2017. "An Econometric Assessment Of Water Consumption: A Case Study Of New North Zone Of Surat City," Working papers 2017-06-16, Voice of Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. World Bank, 2020. "Managing Groundwater for Drought Resilience in South Asia," World Bank Publications - Reports 33332, The World Bank Group.
    2. Marcus Wijnen & Benedicte Augeard & Bradley Hiller & Christopher Ward & Patrick Huntjens, 2012. "Managing the Invisible : Understanding and Improving Groundwater Governance," World Bank Publications - Reports 17228, The World Bank Group.
    3. Meinzen-Dick, Ruth & Janssen, Marco A. & Kandikuppa, Sandeep & Chaturvedi, Rahul & Rao, Kaushalendra & Theis, Sophie, 2018. "Playing games to save water: Collective action games for groundwater management in Andhra Pradesh, India," World Development, Elsevier, vol. 107(C), pages 40-53.
    4. G. Gnanachandrasamy & C. Dushiyanthan & T. Jeyavel Rajakumar & Yongzhang Zhou, 2020. "Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: using Geographical Information System (GIS) and Water Quality Index (WQI)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 759-789, February.
    5. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    6. Soumik Bhattacharya & Swarupa Das & Sandipan Das & Mahesh Kalashetty & Sumedh R. Warghat, 2021. "An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 495-510, January.
    7. Komeda, Kenji, 2021. "Environmental Factors and Internal Migration in India," Warwick-Monash Economics Student Papers 20, Warwick Monash Economics Student Papers.
    8. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    9. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    10. Asprilla-Echeverria, John, 2024. "How do farmers adapt to water scarcity? Evidence from field experiments," Agricultural Water Management, Elsevier, vol. 297(C).
    11. Venot, Jean-Philippe & Reddy, V. Ratna & Umapathy, Deeptha, 2010. "Coping with drought in irrigated South India: Farmers' adjustments in Nagarjuna Sagar," Agricultural Water Management, Elsevier, vol. 97(10), pages 1434-1442, October.
    12. Strand, Jon, 2012. "Low-level versus high-level equilibrium in public utility services," Journal of Public Economics, Elsevier, vol. 96(1), pages 163-172.
    13. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    14. Audrey Richard-Ferroudji & Nicolas Faysse & Zhour Bouzidi & Menon Ragunath & Jean-Daniel Rinaudo, 2016. "Proposal COSUST Special Issue « Co-designing Research on Social Transformations to Sustainability » Title: The DIALAQ project on sustainable groundwater management: a transdisciplinary and transcultur," Post-Print hal-01378517, HAL.
    15. Namrata Chindarkar & R. Quentin Grafton, 2019. "India's depleting groundwater: When science meets policy," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 6(1), pages 108-124, January.
    16. Johnson, David R. & Geldner, Nathan B. & Liu, Jing & Baldos, Uris Lantz & Hertel, Thomas, 2023. "Reducing US biofuels requirements mitigates short-term impacts of global population and income growth on agricultural environmental outcomes," Energy Policy, Elsevier, vol. 175(C).
    17. Kumar, Dinesh M., 2013. "Raising Agricultural Productivity, Reducing Groundwater Use and Mitigating Carbon Emissions: Role of Energy Pricing in Farm Sector," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(3), pages 1-17.
    18. Sandip Kumar Das & Arun Kumar Pramanik & Deepanjan Majumder & Abhik Chatterjee, 2024. "Fluoride and iron in groundwater of a mixed ferricrete and calcrete bearing region in India and assessment of health risk," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23767-23793, September.
    19. Sidhu, R.S. & Vatta, Kamal & Lall, Upmanu, 2011. "Climate Change Impact and Management Strategies for Sustainable Water-Energy-Agriculture Outcomes in Punjab," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 66(3), pages 1-12.
    20. Pandeya, B. & Mulligan, M., 2013. "Modelling crop evapotranspiration and potential impacts on future water availability in the Indo-Gangetic Basin," Agricultural Water Management, Elsevier, vol. 129(C), pages 163-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ess:wpaper:id:10936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Padma Prakash (email available below). General contact details of provider: http://www.esocialsciences.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.