IDEAS home Printed from https://ideas.repec.org/p/ese/iserwp/2011-29.html
   My bibliography  Save this paper

The total survey error paradigm and pre-election polls: the case of the 2006 Italian general elections

Author

Listed:
  • Fumagalli, Laura
  • Sala, Emanuela

Abstract

Pre-election polls sometimes fail to reach the purpose for which they are carried out: to provide accurate predictions of electoral out-comes. By looking at the 2006 Italian General Elections, this paper aims to assess the role that different factors play in determining the accuracy of the pre-election polls. We find strong evidence that the quality of the sampling frame and non-respondents may contribute to biasing the polls results. This paper also aims to show how to over-come some of the limitations of the survey data by using statistical matching techniques and weighing procedures.

Suggested Citation

  • Fumagalli, Laura & Sala, Emanuela, 2011. "The total survey error paradigm and pre-election polls: the case of the 2006 Italian general elections," ISER Working Paper Series 2011-29, Institute for Social and Economic Research.
  • Handle: RePEc:ese:iserwp:2011-29
    as

    Download full text from publisher

    File URL: https://www.iser.essex.ac.uk/wp-content/uploads/files/working-papers/iser/2011-29.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paola Profeta, 2007. "Political support and tax reforms with an application to Italy," Public Choice, Springer, vol. 131(1), pages 141-155, April.
    2. Rodgers, Willard L, 1984. "An Evaluation of Statistical Matching," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(1), pages 91-102, January.
    3. Colm O'Muircheartaigh & Peter Lynn, 1997. "Editorial: The 1997 UK Pre‐election Polls," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 381-385, September.
    4. T. M. F. Smith, 1996. "Public Opinion Polls: The Uk General Election, 1992," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 535-545, May.
    5. Rubin, Donald B, 1986. "Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 87-94, January.
    6. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    7. Schenker, Nathaniel & Taylor, Jeremy M. G., 1996. "Partially parametric techniques for multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 22(4), pages 425-446, August.
    8. Seligson, Mitchell A., 1980. "Trust, Efficacy and Modes of Political Participation: A Study of Costa Rican Peasants," British Journal of Political Science, Cambridge University Press, vol. 10(1), pages 75-98, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sala, Emanuela & Lillini, Roberto, 2014. "The impact of unlisted and no-landline respondents on non-coverage bias. The Italian case," ISER Working Paper Series 2014-16, Institute for Social and Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeideh Kamgar & Florian Meinfelder & Ralf Münnich & Hamidreza Navvabpour, 2020. "Estimation within the new integrated system of household surveys in Germany," Statistical Papers, Springer, vol. 61(5), pages 2091-2117, October.
    2. Jana Emmenegger & Ralf Münnich & Jannik Schaller, 2022. "Evaluating Data Fusion Methods to Improve Income Modelling," Research Papers in Economics 2022-03, University of Trier, Department of Economics.
    3. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    4. Rasner, Anika & Frick, Joachim R. & Grabka, Markus M., 2013. "Statistical Matching of Administrative and Survey Data: An Application to Wealth Inequality Analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(2), pages 192-224.
    5. Patrick M. Joyce & Donald Malec & Roderick J. A. Little & Aaron Gilary & Alfredo Navarro & Mark E. Asiala, 2014. "Statistical Modeling Methodology for the Voting Rights Act Section 203 Language Assistance Determinations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 36-47, March.
    6. Anika Rasner & Joachim R. Frick & Markus M. Grabka, 2013. "Statistical Matching of Administrative and Survey Data," Sociological Methods & Research, , vol. 42(2), pages 192-224, May.
    7. Grabka, Markus & Westermeier, Christian, 2014. "Estimating the Impact of Alternative Multiple Imputation Methods on Longitudinal Wealth Data," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100353, Verein für Socialpolitik / German Economic Association.
    8. Shu Yang & Jae Kwang Kim, 2020. "Asymptotic theory and inference of predictive mean matching imputation using a superpopulation model framework," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 839-861, September.
    9. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    10. Peter ven de Ven & Anne Harrison & Barbara Fraumeni & Dennis Fixler & David Johnson & Andrew Craig & Kevin Furlong, 2017. "A Consistent Data Series to Evaluate Growth and Inequality in the National Accounts Note: The views expressed in this research, including those related to statistical, methodological, technical, or op," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63, pages 437-459, December.
    11. Michael S. Rendall & Bonnie Ghosh-Dastidar & Margaret M. Weden & Zafar Nazarov, 2011. "Multiple Imputation for Combined-Survey Estimation With Incomplete Regressors In One But Not Both Surveys," Working Papers WR-887-1, RAND Corporation.
    12. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    13. Westermeier, Christian & Grabka, Markus M., 2016. "Longitudinal Wealth Data and Multiple Imputation: An Evaluation Study," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(3), pages 237-252.
    14. Jonathan Hambur & Gianni La Cava, 2018. "Do Interest Rates Affect Business Investment? Evidence from Australian Company-level Data," RBA Research Discussion Papers rdp2018-05, Reserve Bank of Australia.
    15. Arif Mamun & David Wittenburg & Noelle Denny-Brown & Michael Levere & David Mann & Rebecca Coughlin & Sarah Croake & Heather Gordon & Denise Hoffman & Rachel Holzwart & Rosalind Keith & Brittany McGil, "undated". "Promoting Opportunity Demonstration: Interim Evaluation Report," Mathematica Policy Research Reports caa99d38a8b14f968ea3438e5, Mathematica Policy Research.
    16. repec:jss:jstsof:29:i09 is not listed on IDEAS
    17. Gowri Gopalakrishna & Gerben ter Riet & Gerko Vink & Ineke Stoop & Jelte M Wicherts & Lex M Bouter, 2022. "Prevalence of questionable research practices, research misconduct and their potential explanatory factors: A survey among academic researchers in The Netherlands," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-16, February.
    18. Paolo Brunori & Pedro Salas-Rojo & Paolo Verme, 2022. "Estimating Inequality with Missing Incomes," Working Papers 616, ECINEQ, Society for the Study of Economic Inequality.
    19. Siddique, Juned & Harel, Ofer, 2009. "MIDAS: A SAS Macro for Multiple Imputation Using Distance-Aided Selection of Donors," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i09).
    20. Baltussen, Guido & Swinkels, Laurens & Van Vliet, Pim, 2021. "Global factor premiums," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1128-1154.
    21. Sean Mc Auliffe & Georg U. Thunecke & Georg Wamser, 2023. "The Tax-Elasticity of Tangible Fixed Assets: Evidence from Novel Corporate Tax Data," CESifo Working Paper Series 10628, CESifo.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ese:iserwp:2011-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jonathan Nears (email available below). General contact details of provider: https://edirc.repec.org/data/rcessuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.